【題目】已知橢圓的離心率為,橢圓的長軸長為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點,是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點?若存在,求出的值;若不存在,請說明理由.
【答案】(1) ;(2) 存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點,理由見解析.
【解析】
(1)由長軸長為4,可得求出,再結(jié)合及,即可求出,從而求出橢圓的方程;
(2) 設,,將直線的方程與橢圓的方程聯(lián)立消去,利用根與系數(shù)的關(guān)系求出,,再由以線段為直徑的圓恰好經(jīng)過坐標原點,可得,即,將,整體代入即可求出.
(1)因為橢圓的長軸長為4,所以,所以,
又,所以,所以,
所以橢圓的方程為.
(2)存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點.
證明:設,,
由,得,
因為直線與橢圓交于兩點,
所以,所以或,
所以,,
所以
因為以線段為直徑的圓恰好經(jīng)過坐標原點,所以,
所以,即,
所以,解得,
所以存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1()的最小正周期為π,且.
(1)求ω和φ的值;
(2)函數(shù)f(x)的圖象縱坐標不變的情況下向右平移個單位,得到函數(shù)g(x)的圖象,
①求函數(shù)g(x)的單調(diào)增區(qū)間;
②求函數(shù)g(x)在的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在點處的切線方程;
(2)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(3)當時,證明: (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若sin A+cos A=1-sin.
(1)求sin A的值;
(2)若c2-a2=2b,且sin B=3cos C,求b.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某景點為了了解游客人數(shù)的變化規(guī)律,提高旅游服務質(zhì)量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖:
根據(jù)該折線圖,下列結(jié)論正確的是( )
A.各年1月至8月月接待游客量逐月增加
B.各年8月至12月月接待游客量逐月遞減
C.各年的月接待游客量最低峰期在12月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設曲線y=xn+1(n∈N*)在點(1,1)處的切線與x軸的交點的橫坐標為xn,令an=lgxn,則a1+a2+…+a99的值為( 。
A. 1 B. 2 C. -2 D. -1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com