【題目】已知:β∈(0, ),α∈( , )且cos( ﹣α)= ,sin( +β)= ,求:cosα,cos(α+β)
【答案】解:∵ <α< ,∴﹣ < ﹣α<0.
∵cos( ﹣α)= ,∴sin( ﹣α)=﹣ ,
∴cos α=cos[ ﹣( ﹣α)]
=cos cos( ﹣α)+cos sin( ﹣α)
= + (﹣ )
= .
又∵0<β< ,∴ < +β<π.
∵sin( +β)= ,∴cos( +β)= Z,
∴cos(α+β)=sin[ +(α+β)]=sin[( +β)﹣( ﹣α)]
=sin( +β)cos( ﹣α)﹣cos( +β)sin( ﹣α)
= ﹣(﹣ )(﹣ )
=﹣ .
【解析】根據(jù)兩角和與差的正弦余弦函數(shù)同角三角函數(shù)間的基本關(guān)系即可求出.
【考點精析】本題主要考查了兩角和與差的余弦公式的相關(guān)知識點,需要掌握兩角和與差的余弦公式:才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點為,在平面內(nèi)過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,cos2B﹣5cos(A+C)=2.
(1)求角B的值;
(2)若cosA= ,△ABC的面積為10 ,求BC邊上的中線長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩個非零向量 、 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ),求證:A、B、D三點共線;
(2)求實數(shù)k使k + 與2 +k 共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設實數(shù)x,y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為10,則a2+b2的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y=2sin(2x﹣ )的一條對稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點( ,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④存在實數(shù)α,使 sin(α+ )=
以上四個命題中正確的有(填寫正確命題前面的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面, , 為的中點, ,四棱錐的體積為.
(Ⅰ)求證: 平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com