【題目】已知拋物線,點與拋物線的焦點關于原點對稱,過點且斜率為的直線與拋物線交于不同兩點,線段的中點為,直線與拋物線交于兩點.
(Ⅰ)判斷是否存在實數使得四邊形為平行四邊形.若存在,求出的值;若不存在,說明理由;
(Ⅱ)求的取值范圍.
【答案】(Ⅰ)答案見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)設直線的方程,代入拋物線方程,利用韋達定理及中點坐標公式求得點坐標,求得直線的方程,代入拋物線方程,若四邊形為平行四邊形,當且僅當,即,求得的值,結合,故不存在使得四邊形為平行四邊形;(Ⅱ)計算出,根據的取值范圍,即可求得的取值范圍.
試題解析:(Ⅰ)設直線的方程為,設.
聯(lián)立方程組,得.
顯然,且,即,得且.
得,
, .
直線的方程為: ,
聯(lián)立方程組,得,
得,
若四邊形為平行四邊形,
當且僅當 ,即,
得,與且矛盾.
故不存在實數使得四邊形為平行四邊形
(Ⅱ)
由且,得;
當, 取得最小值;
當時, 取;當時, 取;
所以
科目:高中數學 來源: 題型:
【題目】在某中學舉行的物理知識競賽中,將三個年級參賽學生的成績在進行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數是15.
(1)求成績在50-70分的頻率是多少
(2)求這三個年級參賽學生的總人數是多少:
(3)求成績在80-100分的學生人數是多少
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的導函數f '(x)的圖象如圖所示,f(-1)=f(2)=3,令g(x)=(x-1)f(x),則不等式g(x)≥3x-3的解集是( )
A. [-1,1]∪[2,+∞)B. (-∞,-1]∪[1,2]
C. (-∞,-1]∪[2,+∞)D. [-1,2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐O-ABC的三條側棱OA,OB,OC兩兩垂直, 為等邊三角形, 為內部一點,點在的延長線上,且PA=PB.
(Ⅰ)證明:OA=OB;
(Ⅱ)證明:平面PAB平面POC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網絡是一種先進的高頻傳輸技術,我國的技術發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)( )
A.2020年6月B.2020年7月C.2020年8月D.2020年9月
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗疫情.某市要求全體市民在家隔離,同時決定全市所有學校推遲開學.某區(qū)教育局為了讓學生“停課不停學”,要求學校各科老師每天在網上授課輔導,每天共200分鐘.教育局為了了解高三學生網上學習情況,上課幾天后在全區(qū)高三學生中采取隨機抽樣的方法抽取了80名學生(其中男女生恰好各占一半)進行問卷調查,按男女生分為兩組,再將每組學生在線學習時間(分鐘)分為5組,,,,得到如圖所示的頻率分布直方圖.全區(qū)高三學生有3000人(男女生人數大致相等),以頻率估計概率回答下列問題:
(1)估計全區(qū)高三學生中網上學習時間不超過40分鐘的人數;
(2)在調查的80名高三學生且學習時間不超過40分鐘的學生中,男女生按分層抽樣的方法抽取6人.若從這6人中隨機抽取2人進行電話訪談,求至少抽到1名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com