【題目】網(wǎng)絡(luò)是一種先進的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)( )
A.2020年6月B.2020年7月C.2020年8月D.2020年9月
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失為(單位:元),指數(shù)為.當(dāng)在區(qū)間內(nèi)時對企業(yè)沒有造成經(jīng)濟損失;當(dāng)在區(qū)間內(nèi)時對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)指數(shù)為150時造成的經(jīng)濟損失為500元,當(dāng)指數(shù)為200時,造成的經(jīng)濟損失為700元);當(dāng)指數(shù)大于300時造成的經(jīng)濟損失為2000元.
(1)試寫出的表達式;
(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.32 | 2.07 | 2.70 | 3.74 | 5.02 | 6.63 | 7.87 | 10.828 |
,其中.
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線是中心在原點,焦點在軸上的雙曲線的右支,它的離心率剛好是其對應(yīng)雙曲線的實軸長,且一條漸近線方程是,線段是過曲線右焦點的一條弦,是弦的中點。
(1)求曲線的方程;
(2)求點到軸距離的最小值;
(3)若作出直線,使點在直線上的射影滿足.當(dāng)點在曲線上運動時,求的取值范圍.
(參考公式:若為雙曲線右支上的點,為右焦點,則.(為離心率))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點與拋物線的焦點關(guān)于原點對稱,過點且斜率為的直線與拋物線交于不同兩點,線段的中點為,直線與拋物線交于兩點.
(Ⅰ)判斷是否存在實數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說明理由;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD的底面是邊長為a的棱形,PD⊥底面ABCD.
(1)證明:AC⊥平面PBD;
(2)若PD=AD,直線PB與平面ABCD所成的角為45°,四棱錐P—ABCD的體積為,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,且a1=1,S3+S4=S5.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(-1)n-1an,求數(shù)列{bn}的前2n項和T2n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,在直線.
(1)求數(shù)列{an}的通項公式;
(2)令,數(shù)列的前n項和為.
(ⅰ)求;
(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ< (n∈N)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,點,分別是,的中點.
(1)求證:平面;
(2)若點為棱上一點,且平面平面, 求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,有正弦定理:定值,這個定值就是的外接圓的直徑如圖2所示,中,已知,點M在直線EF上從左到右運動點M不與E、F重合,對于M的每一個位置,記的外接圓面積與的外接圓面積的比值為,那么
A. 先變小再變大
B. 僅當(dāng)M為線段EF的中點時,取得最大值
C. 先變大再變小
D. 是一個定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com