【題目】如圖,在直三棱柱中, AB=1,,∠ABC=.
(1 )證明:;
(2)求二面角A——B的正切值.
【答案】解:方法一
(2)如圖所示,作交于,連,由三垂線定理可得
∴為所求二面角的平面角,
在中,……8分
在中,
,…………10分
所以………………11分
即 二面角A——B的余弦值是。………………………12分
………………11分
所以 二面角所成角的余弦值是………………………12分
【解析】
試題(1)欲證AB⊥A1C,而A1C平面ACC1A1,可先證AB⊥平面ACC1A1,根據(jù)三棱柱ABC﹣A1B1C1為直三棱柱,可知AB⊥AA1,由正弦定理得AB⊥AC,滿足線面垂直的判定定理所需條件;
(2)作AD⊥A1C交A1C于D點,連接BD,由三垂線定理知BD⊥A1C,則∠ADB為二面角A﹣A1C﹣B的平面角,在Rt△BAD中,求出二面角A﹣A1C﹣B的余弦值即可.
(1)證明:∵三棱柱ABC﹣A1B1C1為直三棱柱,∴AB⊥AA1,
在△ABC中,AB=1,AC=,∠ABC=60°,由正弦定理得∠ACB=30°,
∴∠BAC=90°,即AB⊥AC,
∴AB⊥平面ACC1A1,
又A1C
∴AB⊥A1C.
(2)解:如圖,作AD⊥A1C交A1C于D點,連接BD,
由三垂線定理知BD⊥A1C,
∴∠ADB為二面角A﹣A1C﹣B的平面角.
在Rt△AA1C中,AD==,
在Rt△BAD中,tan∠ADB==,
∴cos∠ADB=,
即二面角A﹣A1C﹣B的大小為arccos.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>2)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且ABC為正三角形.
(1)求ω的值;
(2)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),則數(shù)列{bn}的公比為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解甲、乙兩所學校全體高三年級學生在該地區(qū)八校聯(lián)考中的數(shù)學成績情況,從兩校各隨機抽取60名學生,將所得樣本作出頻數(shù)分布統(tǒng)計表如下: 甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 2 | 5 | 9 | 10 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 14 | 10 | 6 | 4 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 2 | 4 | 8 | 16 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 15 | 6 | 6 | 3 |
以抽樣所得樣本數(shù)據(jù)估計總體
(1)比較甲、乙兩校學生的數(shù)學平均成績的高低;
(2)若規(guī)定數(shù)學成績不低于120分為優(yōu)秀,從甲、乙兩校全體高三學生中各隨機抽取2人,其中數(shù)學成績?yōu)閮?yōu)秀的共X人,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|2x+2|﹣|x﹣2|. (Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2﹣ t恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn , 已知a2=7,a3為整數(shù),且Sn的最大值為S5 .
(1)求{an}的通項公式;
(2)設bn= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的極坐標方程為ρ2cos2θ=18,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.
(1)求A,B兩點的極坐標;
(2)曲線C1與直線 (t為參數(shù))分別相交于M,N兩點,求線段MN的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且△的面積最大?若存在,求出點的坐標及對應的△的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)在處的切線方程;
(2)若函數(shù)在上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com