【題目】在正四棱錐V﹣ABCD中,底面正方形ABCD的邊長為1,側(cè)棱長為2,則異面直線VA與BD所成角的大小為

【答案】
【解析】解:如圖所示,連接AC,交BD于O,連接VO
∵四邊形ABCD是正方形,
∴AC⊥BD,O為BD的中點(diǎn)
又∵正四棱錐V﹣ABCD中,VB=VD
∴VO⊥BD
∵AC∩VO=O,AC、VO平面ACV
∴BD⊥平面ACV
∵VA平面ACV
∴BD⊥VA;
即異面直線VA與BD所成角等于
所以答案是:

【考點(diǎn)精析】本題主要考查了異面直線及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

寫出曲線的極坐標(biāo)的方程以及曲線的直角坐標(biāo)方程;

若過點(diǎn)(極坐標(biāo))且傾斜角為的直線與曲線交于, 兩點(diǎn),弦的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, ,且對(duì)任意正整數(shù)都成立,數(shù)列的前項(xiàng)和為

1)若,且,求;

2)是否存在實(shí)數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請(qǐng)說明理由;

3)若,求.(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后隨機(jī)投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù),
(1)求點(diǎn)P(x,y)在直線y=x﹣1上的概率;
(2)求點(diǎn)P(x,y)滿足y2<4x的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)M(﹣3,﹣3)的直線l被圓x2+y2+4y﹣21=0所截得的弦長為 ,則直線l方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 + =1(a>b>0)過點(diǎn)A(1, ),其焦距為2.

(1)求橢圓C1的方程;
(2)已知橢圓具有如下性質(zhì):若橢圓的方程為 + =1(a>b>0),則橢圓在其上一點(diǎn)A(x0 , y0)處的切線方程為 + =1,試運(yùn)用該性質(zhì)解決以下問題:
(i)如圖(1),點(diǎn)B為C1在第一象限中的任意一點(diǎn),過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求△OCD面積的最小值;
(ii)如圖(2),過橢圓C2 + =1上任意一點(diǎn)P作C1的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓C2上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,已知an>0,a1+a2+a3=15,且a1+2,a2+5,a3+13構(gòu)成等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A1、A2為橢圓 的左右頂點(diǎn),若在橢圓上存在異于A1、A2的點(diǎn)P,使得 ,其中O為坐標(biāo)原點(diǎn),則橢圓的離心率e的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案