【題目】已知y=f(x)是定義在R上的奇函數(shù),且x>0時,f(x)=1+( x
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的草圖;

(3)利用圖象直接寫出函數(shù)f(x)的單調區(qū)間及值域.

【答案】
(1)解:由題意得,當x=0時,f(0)=0,

當x<0時,則﹣x<0,f(x)=﹣f(﹣x)=﹣( )=﹣1﹣2x,

故f(x)的解析式為:


(2)解:函數(shù)草圖如右;
(3)解:由圖得,減區(qū)間為(﹣∞,0),(0,+∞);值域為{y|﹣2<y<﹣1或y=0或1<y<2}
【解析】(1)根據(jù)f(x)是定義在R上的奇函數(shù)得f(0)=0,當x<0時則﹣x<0,由f(x)=﹣f(﹣x)求出x<0時的解析式,再用分段函數(shù)的形式表示出f(x);(2)根據(jù)解析式和指數(shù)函數(shù)的圖象,畫出該函數(shù)的草圖;(3)根據(jù)函數(shù)的圖象求出f(x)的單調區(qū)間及值域.
【考點精析】通過靈活運用奇偶性與單調性的綜合,掌握奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調性即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線E的中心在坐標原點,離心率為2,E的右焦點與拋物線C:y2=8x的焦點重合,A、B是C的準線與E的兩個交點,則|AB|=(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|0<ax﹣1≤5},B={x|﹣ <x≤2},
(1)若a=1,求A∪B;
(2)若A∩B=且a>0,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來空氣質量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關,在市第一人民醫(yī)院隨機對入院50人進行了問卷調查,得到如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

20

5

25

10

15

25

合計

30

20

50

(1)是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3位進行其他方面的排查,其中患胃病的人數(shù)為,求的分布列、數(shù)學期望.

參考公式: ,其中.

下面的臨界值僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3 (a∈R).
(1)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
(2)若對任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2alnx﹣2ax=0有唯一解,則實數(shù)a的值為(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:“今有垣厚五尺,兩鼠對穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側面對面打洞,已知第一天兩鼠都打了一尺長的洞,以后大鼠每天打的洞長是前一天的2倍,小鼠每天打的洞長是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時各打了幾尺長的洞?設兩鼠x 天后相遇(假設兩鼠每天的速度是勻速的),則x=(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知X和Y是兩個分類變量,由公式K2= 算出K2的觀測值k約為7.822根據(jù)下面的臨界值表可推斷(

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


A.推斷“分類變量X和Y沒有關系”犯錯誤的概率上界為0.010
B.推斷“分類變量X和Y有關系”犯錯誤的概率上界為0.010
C.有至少99%的把握認為分類變量X和Y沒有關系
D.有至多99%的把握認為分類變量X和Y有關系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中, .

(1)證明:平面平面;

(2)若異面直線所成角為, , ,求二面角的大小.

查看答案和解析>>

同步練習冊答案