二次函數(shù)y=ax2+bx+c的圖象如圖所示,則a+b+c
 
0;b2-4ac
 
0.(填“>”或“<”、“=”)
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:結(jié)合二次函數(shù)的圖象與性質(zhì),得出f(1)>0;與x軸有不同的兩個交點,得出△>0.
解答: 解:由二次函數(shù)y=ax2+bx+c的圖象知,
圖象開口向上,且與x軸有不同的兩個交點,
∴b2-4ac>0;
又二次函數(shù)圖象的對稱軸在y軸的左側(cè),且f(0)>0,
∴f(1)>f(0)>0;
即a+b+c>0;
故答案為:>,>.
點評:本題考查了二次函數(shù)的圖象與性質(zhì)應(yīng)用問題,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

計算∫
 
-1
-e
1
x
dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點M(-1,m),N(m+1,4)的直線的斜率等于1,則m的值為( 。
A、1
B、
1
2
C、2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x-a
(a∈R).若方程f(f(x))=x有解,則a的取值范圍為(  )
A、(-∞,
1
4
]
B、(0,
1
8
]
C、(-∞,
1
8
]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
2-x
x+1
≤0
的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中a1=1,a5=13,an+2+an=2an+1;數(shù)列{bn}中,b2=6,b3=3,bn+2bn=b
 
2
n+1
,在直角坐標平面內(nèi),已知點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn)…,則向量
P1P2
+
P3P4
+
P5P6
+…+
P2009P2010
的坐標為( 。
A、(3015,8[(
1
2
1006-1])
B、(3012,8[(
1
2
1006-1])
C、(3015,8[(
1
2
2010-1])
D、(3018,8[(
1
2
2010-1])

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={(x,y)||x|+|y|≤2,x,y∈Z},集合B={(x,y)|x2+y2≤2,x,y∈Z},在集合A中任取一個元素a,則a∈B的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某小型餐館一天中要購買A,B兩種蔬菜,A,B蔬菜每公斤的單價分別為2元和3 元.根據(jù)需要,A蔬菜至少要買6公斤,B蔬菜至少要買4公斤,而且一天中購買這兩種蔬菜的總費用不能超過60元.
(1)寫出一天中A蔬菜購買的公斤數(shù)x和B蔬菜購買的公斤數(shù)y之間的滿足的不等式組;并在給定的坐標系中畫出不等式組表示的平面區(qū)域(用陰影表示),
(2)如果這兩種蔬菜加工后全部賣出,A,B兩種蔬菜加工后每公斤的利潤分別為2元和1元,餐館如何采購這兩種蔬菜使得利潤最大,利潤最大為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案