【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為,,且小正方形與大正方形面積之比為,則的值為( )
A. B. C. D.
【答案】D
【解析】
設大的正方形的邊長為1,由已知可求小正方形的邊長,可求cosα﹣sinα=,sinβ﹣cosβ=,且cosα=sinβ,sinα=cosβ,進而利用兩角差的余弦函數(shù)公式,同角三角函數(shù)基本關系式即可計算得解.
設大的正方形的邊長為1,由于小正方形與大正方形面積之比為9:25,
可得:小正方形的邊長為,
可得:cosα﹣sinα=,①sinβ﹣cosβ=,②
由圖可得:cosα=sinβ,sinα=cosβ,
①×②可得:=cosαsinβ+sinαcosβ﹣cosαcosβ﹣sinαsinβ=sin2β+cos2β﹣cos(α﹣β)=1﹣cos(α﹣β),
解得:cos(α﹣β)=.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,部分對應值如下表.
x | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
的導函數(shù)的圖象如圖所示:下列關于的命題:
函數(shù)是周期函數(shù);
函數(shù)在是減函數(shù);
如果當時,的最大值是2,那么t的最大值為4;
函數(shù)的零點個數(shù)可能為0、1、2、3、4個.
其中正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且焦點在軸上、短半軸長為的橢圓的標準方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍;
(3)如圖:直線與兩個“相似橢圓”和分別交于點和點,試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使和組成以為相似比的兩個相似三角形,寫出具體作法.(不必證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐的頂點為,底面圓心為,母線長為,,、是底面半徑,且:,為線段的中點,為線段的中點,如圖所示:
(1)求圓錐的表面積;
(2)求異面直線和所成的角的大小,并求、兩點在圓錐側面上的最短距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過點,且與軸、軸都交于正半軸,當直線與坐標軸圍成的三角形面積取得最小值時,求:
(1)直線的方程;
(2)直線l關于直線m:y=2x-1對稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項, , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請給以證明;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
若是函數(shù)的極值點,1是函數(shù)的一個零點,求的值;
當時,討論函數(shù)的單調(diào)性;
若對任意,都存在,使得成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)在線段AE上是否存在一點R,使得面BDR⊥面DCB,若存在,求出點R的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com