數(shù)列成等差數(shù)列,則分別為       ,由此猜想出=        。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知首項(xiàng)不為零的數(shù)列的前項(xiàng)和為,若對(duì)任意的,,都有
(Ⅰ)判斷數(shù)列是否為等差數(shù)列,并證明你的結(jié)論;
(Ⅱ)若數(shù)列的第項(xiàng)是數(shù)列的第項(xiàng),且,,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊的長(zhǎng)分別為a、bc,有下列兩個(gè)條件:(1)ab、c成等差數(shù)列;(2)ab、c成等比數(shù)列,現(xiàn)給出三個(gè)結(jié)論:(1);(2);(3)。
請(qǐng)你選取給定的兩個(gè)條件中的一個(gè)條件為條件,三個(gè)結(jié)論中的兩個(gè)為結(jié)論,組建一個(gè)你認(rèn)為正確的命題,并證明之。
(I)組建的命題為:已知_______________________________________________
求證:①__________________________________________
②__________________________________________
  (II)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知點(diǎn)(1,)是函數(shù))的圖象上一點(diǎn),等比數(shù)列的前n項(xiàng)和為,數(shù)列的首項(xiàng)為c,且前n項(xiàng)和滿足
=+(n2).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列{前n項(xiàng)和為,問>的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列的前項(xiàng)和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項(xiàng)公式,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),數(shù)列通項(xiàng)公式

數(shù)列滿足,,設(shè)
(1)證明,并求數(shù)列項(xiàng)和
(2)若(1)中的滿足對(duì)任意不小于2的正整數(shù), 恒成立,求最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1,再染2個(gè)偶數(shù)2、4;再染4后面最鄰近的3個(gè)連續(xù)奇數(shù)5、7、9;再染9后面最鄰近的4個(gè)連續(xù)偶數(shù)10、12、14、16;再染此后最鄰近的5個(gè)連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直染下去,得到一紅色子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個(gè)紅色子數(shù)列中,由1開始的第2003個(gè)數(shù)是(    )
A.3844B.3943C.3945D.4006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在數(shù)列中,已知
(Ⅰ)求證:數(shù)是等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)求數(shù)列的前項(xiàng)和
解:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列中,已知,,若對(duì)任意正整數(shù),有,且,則該數(shù)列的前2010項(xiàng)和
(   )
A..B..C..D..

查看答案和解析>>

同步練習(xí)冊(cè)答案