已知f(
x-1
x+1
)=
x2-1
x2+1
,求f(x)的解析式.
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,求函數(shù)解析式設(shè)
x-1
x+1
=t,求出x;再求f(t),即得f(x).
解答: 解:設(shè)
x-1
x+1
=t,則x=
1+t
1-t
(其中t≠1);
∴f(t)=
(
1+t
1-t
)
2
-1
(
1+t
1-t
)
2
+1
=
2t
1+t2
,
∴f(x)=
2x
1+x2
(其中x≠1).
點(diǎn)評(píng):本題考查了用換元法求函數(shù)解析式的問(wèn)題,解題時(shí)要注意函數(shù)自變量的變化,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:(m+1)x+y=2和l2:y=-x+1,若l1∥l2,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓
x2
4
+
y2
3
=1
的左、右焦點(diǎn)為F1,F(xiàn)2,上頂點(diǎn)為A,點(diǎn)P為第一象限內(nèi)橢圓上的一點(diǎn),若點(diǎn)A到PF1的距離是點(diǎn)F2到PF1距離的2倍,則直線PF1的斜率為( 。
A、
3
3
B、
5
3
C、
3
5
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x)=loga
3-x
3+x
(a>0且a≠1),證明當(dāng)a>1時(shí)函數(shù)f(x)在其定義域內(nèi)是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,且當(dāng)n≥2時(shí),an-2n-2an-1=0,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=an2+an,求證
1
a1+1
+
1
a2+1
+…+
1
an+1
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,1)而且F1是橢圓
x2
9
+
y2
5
=1的左焦點(diǎn),P是橢圓上任意一點(diǎn),求|PF1|+|PA|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)x,y為正數(shù),求(x+y)(
1
x
+
4
y
)
的最小值,并寫出取得最小值的條件.
(2)設(shè)a>b>c,若
1
a-b
+
1
b-c
n
a-c
恒成立,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2x+1)+kx(k為常數(shù))是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log2((
2
x+2+a)+log2
2
2
x,當(dāng)f(x)=g(x)時(shí),求實(shí)數(shù)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案