已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.
(1)∵直線過點(diǎn)A(0,-b)和B(a,0),
∴直線L:
x
a
-
y
b
=1
與坐標(biāo)原點(diǎn)的距離為
3
2
,∴
3
2
=
|ab|
a2+b2
.①…(2分)
∵橢圓的離心率 e=
6
3
,∴
c2
a2
=
2
3
.②…(4分)
由①得4a2b2=3a2+3b2,即4a2(a2-c2)=3a2+3(a2-c2)③
由②③得a2=3,c2=2
∴b2=a2-c2=1
∴所求橢圓的方程是
x2
3
+y2=1…(6分)
(2)直線y=kx+2代入橢圓方程,消去y可得:(1+3k2)x2+12kx+9=0
∴△=36k2-36>0,∴k>1或k<-1…(8分)
設(shè)C(x1,y1),D(x2,y2),則有x1+x2=
-12k
1+3k2
,x1x2=
9
1+3k2
…(10分)
EC
=(x1+1,y1),
ED
=(x2+1,y2),且以CD為圓心的圓過點(diǎn)E,
∴EC⊥ED…(12分)
∴(x1+1)(x2+1)+y1y2=0
∴(1+k2)x1x2+(2k+1)(x1+x2)+5=0
∴(1+k2)×
9
1+3k2
+(2k+1)×
-12k
1+3k2
+5=0,解得k=
7
6
>1,
∴當(dāng)k=
7
6
時(shí)以CD為直徑的圓過定點(diǎn)E…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)(
3
,-
3
2
)
,且橢圓的離心率e=
1
2
,過橢圓的右焦點(diǎn)F作兩條互相垂直的直線,分別交橢圓于點(diǎn)A、B及C、D.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:
1
|AB|
+
1
|CD|
為定值;
(Ⅲ)求|AB|+
9
16
|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右兩焦點(diǎn)分別為F1,F(xiàn)2,p是橢圓上一點(diǎn),且在x軸上方,PF2⊥F1F2,PF2=λPF1,λ∈[
1
3
,
1
2
].
(1)求橢圓的離心率e的取值范圍;
(2)當(dāng)e取最大值時(shí),過F1,F(xiàn)2,P的圓Q的截y軸的線段長(zhǎng)為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線l上任一點(diǎn)A引圓Q的兩條切線,切點(diǎn)分別為M,N.試探究直線MN是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)M(1,1)作一直線與橢圓
x2
9
+
y2
4
=1相交于A,B兩點(diǎn),若M點(diǎn)恰好為弦AB的中點(diǎn),則AB所在直線的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知A(-3,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動(dòng),并且滿足
AB
BQ
=0
BC
=
1
2
CQ

(1)求動(dòng)點(diǎn)Q的軌跡方程;
(2)設(shè)過點(diǎn)A的直線與Q的軌跡交于E、F兩點(diǎn),A′(3,0),求直線A′E、A′F的斜率之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長(zhǎng)為4(
2
+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線為
l1,l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1,又l與l2交于P,設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).
(1)當(dāng)l1與l2的夾角為60°,且△POF的面積為
3
2
時(shí),求橢圓C的方程;
(2)當(dāng)
FA
AP
時(shí),求當(dāng)λ取到最大值時(shí)橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率e=
5
5
,過F1的直線交橢圓于M、N兩點(diǎn),且△MNF2的周長(zhǎng)為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)AB是過橢圓E中心的任意弦,P是線段AB的垂直平分線與橢圓E的一個(gè)交點(diǎn),求△APB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案