【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且.
(Ⅰ)證明:;
(Ⅱ)若,求.
【答案】(Ⅰ)證明詳見解析;(Ⅱ)4.
【解析】試題分析:(Ⅰ)將已知等式通分后利用兩角和的正弦函數(shù)公式整理,利用正弦定理,即可證明.(Ⅱ)由余弦定理求出A的余弦函數(shù)值,利用(Ⅰ)的條件,求解B的正切函數(shù)值即可
試題解析:(1)根據(jù)正弦定理,設(shè)===k(k>0).
則a="ksin" A,b="ksin" B,c="ksin" C.
代入+=中,有+=,變形可得
sin Asin B="sin" Acos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)="sin" C,
所以sin Asin B="sin" C.
(2)由已知,b2+c2–a2=bc,根據(jù)余弦定理,有cos A==.
所以sin A==.
由(Ⅰ),sin Asin B="sin" Acos B+cos Asin B,所以sin B=cos B+sin B,
故tan B==4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義域為R的奇函數(shù) (a為實數(shù)). (Ⅰ)求a的值;
(Ⅱ)判斷f(x)的單調(diào)性(不必證明),并求出f(x)的值域;
(Ⅲ)若對任意的x∈[1,4],不等式f(k﹣ )+f(2﹣x)>0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在x軸上的橢圓的一個頂點坐標(biāo)為(0,1),其離心率為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓上一點P滿足∠F1PF2=60°,其中F1 , F2為橢圓的左右焦點,求△F1PF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年3月9日至15日,谷歌人工智能系統(tǒng)“阿爾法”迎戰(zhàn)圍棋冠軍李世石,最終結(jié)果“阿爾法”以總比分4比1戰(zhàn)勝李世石.許多人認(rèn)為這場比賽是人類的勝利,也有許多人持反對意見,有網(wǎng)友為此進行了調(diào)查,在參加調(diào)查的2548名男性中有1560名持反對意見,2452名女性中有1200名持反對意見,在運用這些數(shù)據(jù)說明“性別”對判斷“人機大戰(zhàn)是人類的勝利”是否有關(guān)系時,應(yīng)采用的統(tǒng)計方法是( )
A.莖葉圖
B.分層抽樣
C.獨立性檢驗
D.回歸直線方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣2﹣x , 若對任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國2009年至2015年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): yi=9.32, tiyi=40.17, =0.55, ≈2.646.
參考公式:相關(guān)系數(shù)r= =
回歸方程 = + t中斜率和截距的最小二乘估計公式分別為: = , = ﹣ t.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com