【題目】【2017屆廣西陸川縣中學(xué)高三文上學(xué)期二模】已知函數(shù).

I)求函數(shù)的單調(diào)區(qū)間;

II)若上恒成立,求實(shí)數(shù)的取值范圍;

III)在(II)的條件下,對(duì)任意的,求證:.

【答案】I當(dāng)時(shí),上單調(diào)遞增,無(wú)單調(diào)遞減區(qū)間,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為II;(III)證明見(jiàn)解析.

【解析】

試題分析:I)利用時(shí)為單調(diào)增函數(shù),時(shí)為單調(diào)減函數(shù)這一性質(zhì)來(lái)分情況討論題中單調(diào)區(qū)間問(wèn)題;II)根據(jù)函數(shù)單調(diào)性與最值,若上恒成立,則函數(shù)的最大值小于或等于零.當(dāng)時(shí),上單調(diào)遞增,,說(shuō)明時(shí),不合題意舍去.當(dāng)時(shí),的最大值小于零.上恒成立,所以只能等于零.即可求得答案;III)首先將的表達(dá)式表達(dá)出來(lái),化簡(jiǎn)轉(zhuǎn)化為的形式,再根據(jù)(II)的結(jié)論得到,后逐步化簡(jiǎn),原命題得證.

試題解析:(I

當(dāng)時(shí),恒成立,則函數(shù)上單調(diào)遞增,無(wú)單調(diào)遞減區(qū)間;

當(dāng)時(shí),由,得,由,

,此時(shí)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

II)由(I)知:當(dāng)時(shí),上遞增,,顯然不成立;

當(dāng)時(shí),,只需即可,

,則,

上單調(diào)遞減,在上單調(diào)遞增.

.

對(duì)恒成立,也就是對(duì)恒成立,

,解得上恒成立,則.

(III)證明:,

由(II)得上恒成立,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),

又由,所以有,即.

,

則原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行物理競(jìng)賽,有8名男生和12名女生報(bào)名參加,將這20名學(xué)生的成績(jī)制成莖葉圖如圖所示.成績(jī)不低于80分的學(xué)生獲得“優(yōu)秀獎(jiǎng)”,其余獲“紀(jì)念獎(jiǎng)”.

(Ⅰ)求出8名男生的平均成績(jī)和12 名女生成績(jī)的中位數(shù);

(Ⅱ)按照獲獎(jiǎng)?lì)愋,用分層抽樣的方法從這20名學(xué)生中抽取5人,再?gòu)倪x出的5人中任選3人,求恰有1人獲“優(yōu)秀獎(jiǎng)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種商品在天每件的銷(xiāo)售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系用如圖表示,該商品在天內(nèi)日銷(xiāo)售量(件)與時(shí)間(天)之間的關(guān)系如下表:

)根據(jù)提供的圖象(如圖),寫(xiě)出該商品每件的銷(xiāo)售價(jià)格與時(shí)間的函數(shù)關(guān)系式.

)根據(jù)表提供的數(shù)據(jù),寫(xiě)出日銷(xiāo)售量與時(shí)間的一次函數(shù)關(guān)系式.

)求該商品的日銷(xiāo)售金額的最大值,并指出日銷(xiāo)售金額最大的一天是天中的第幾天.(日銷(xiāo)售金額每件的銷(xiāo)售價(jià)格日銷(xiāo)售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2014課標(biāo)全國(guó),文12】已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( ).

A.(2,+∞) B.(1,+∞)

C.(-∞,-2) D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù), 的值分別為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆湖北省荊、荊、襄、宜四地七?荚嚶(lián)盟高三2月聯(lián)考數(shù)學(xué)(文)】已知函數(shù)

(Ⅰ)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

(Ⅱ)若有兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)求的單調(diào)區(qū)間;

(II)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直線(xiàn)xx1xx2yf(x)圖象的任意兩條對(duì)稱(chēng)軸,且|x1x2|的最小值為 .

(Ⅰ)求f(x)的表達(dá)式;

(Ⅱ)將函數(shù)f(x)的圖象向右平移個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號(hào)召,王老師每個(gè)工作日上下班由自駕車(chē)改為選擇乘坐地鐵或騎共享單車(chē)這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車(chē)的概率是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車(chē)單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.

(I)求X的分布列和數(shù)學(xué)期望;

(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請(qǐng)判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說(shuō)明理由.

原則:設(shè)表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

同步練習(xí)冊(cè)答案