【題目】剪刀、石頭、布的游戲規(guī)則是:雙方齊喊口令,然后同時(shí)出拳,握緊的拳頭代表石頭”,“食指和中指伸出代表剪刀,五指伸開代表”。“ 石頭剪刀”, “剪刀”, “石頭,若所出拳相同則為和局,F(xiàn)甲乙兩人通過剪刀、石頭、布進(jìn)行比賽。

(1)設(shè)甲乙兩人每局都隨機(jī)出剪刀”、“石頭”、“中的某一個(gè),求甲勝乙的概率;

(2)最近中國(guó)科學(xué)家在網(wǎng)上發(fā)布了剪刀、石頭、布的致勝策略,引起了甲的關(guān)注,據(jù)甲認(rèn)真觀察,乙有以下出拳習(xí)慣:①第一局不出剪刀”; ②連續(xù)兩局的出拳一定不一樣,即如本局出剪刀,則下局出石頭”、“中的一個(gè)。假設(shè)甲的分析是正確的,甲據(jù)此分析出拳,保證每局都不輸給乙,在最多5局的比賽中,誰(shuí)勝的局?jǐn)?shù)多,誰(shuí)獲勝。游戲結(jié)束的條件是:一方勝3局或賽滿5局,用表示游戲結(jié)束時(shí)的游戲局?jǐn)?shù),求的分布列和期望。

【答案】(1)(2)見解析

【解析】

本試題考查了概率和分布列的綜合試題以及利用分布列求解期望值問題的綜合運(yùn)用。第一問由題意利用列舉法得玩家甲、乙雙方在1次游戲中出示手勢(shì)的所有可能結(jié)果是:(石頭,石頭);(石頭,剪刀);(石頭,布);(剪刀,石頭);(剪刀,剪刀);(剪刀,布);(布,石頭);(布,剪刀);(布,布),而玩家甲勝玩家乙的基本事件分別是:(石頭,剪刀);(剪刀,布);(布,石頭),利用古典概型隨機(jī)事件地概率公式即可。第二問同理也可以得到。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名籃球隊(duì)員輪流投籃直至某人投中為止,設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,而且不受其他次投籃結(jié)果的影響.設(shè)投籃的輪數(shù)為,若甲先投,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為調(diào)查新生嬰兒健康狀況,隨機(jī)抽取6名8個(gè)月齡嬰兒稱量體重(單位:千克),稱量結(jié)果分別為6,8,9,9,9.5,10.已知8個(gè)月齡嬰兒體重超過7.2千克,不超過9.8千克為“標(biāo)準(zhǔn)體重”,否則為“不標(biāo)準(zhǔn)體重”.

(1)根據(jù)樣本估計(jì)總體思想,將頻率視為概率,若從該地區(qū)全部8個(gè)月齡嬰兒中任取3名進(jìn)行稱重,則至少有2名嬰兒為“標(biāo)準(zhǔn)體重”的概率是多少?

(2)從抽取的6名嬰兒中,隨機(jī)選取4名,設(shè)X表示抽到的“標(biāo)準(zhǔn)體重”人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)判斷函數(shù)能否有3個(gè)零點(diǎn)?若能,求出的取值范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,是正方形,平面, ,分別是的中點(diǎn).

(1)求證:平面平面

(2)證明平面平面,并求出到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 平面, , , , , 的中點(diǎn), 在線段上,且滿足.

(1)求證: 平面;

(2)求二面角的余弦值;

(3)在線段上是否存在點(diǎn),使得與平面所成角的余弦值是,若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三條直線型公路,,在點(diǎn)處交匯,其中的夾角都為,在公路上取一點(diǎn),且km,過鋪設(shè)一直線型的管道,其中點(diǎn)上,點(diǎn)上(,足夠長(zhǎng)),設(shè)kmkm

1)求出,的關(guān)系式;

2)試確定,的位置,使得公路段與段的長(zhǎng)度之和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),方程有兩個(gè)相異實(shí)根,且,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案