在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),它與曲線交于A、B兩點(diǎn)。
(1)求的長;
(2)在以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離。
(1);(2)
解析試題分析:解:(Ⅰ)把直線的參數(shù)方程對應(yīng)的坐標(biāo)代入曲線方程并化簡得 7t2-12t-5=0,
設(shè)A,B對應(yīng)的參數(shù)分別為 t1 和t2,則 t1+t2=,t1•t2 =- …(3分)
所以|AB|=5•|t1-t2|=5 =.; …(5分)
(Ⅱ)易得點(diǎn)P在平面直角坐標(biāo)系下的坐標(biāo)為(-2,2),
根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得AB中點(diǎn)M對應(yīng)的參數(shù)為 …(8分)
所以由t的幾何意義可得點(diǎn)P到M的距離為|PM|=5•. …(10分)
考點(diǎn):直線的參數(shù)方程、點(diǎn)到直線的距離公式
點(diǎn)評:本題主要考查直線的參數(shù)方程、點(diǎn)到直線的距離公式坐標(biāo)刻畫點(diǎn)的位置,屬于基礎(chǔ)題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點(diǎn),口寬EF=4米,高3米建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時(shí),所挖的土最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過點(diǎn)
( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點(diǎn)M的動直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線斜率的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的左焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D、E兩點(diǎn).
(Ⅰ)若點(diǎn)G的橫坐標(biāo)為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2.
試問:是否存在直線AB,使得S1=S2?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。
(1)求橢圓C的方程;
(2)過點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率等于,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左右頂點(diǎn)分別為,,過點(diǎn)的動直線與橢圓相交于,兩點(diǎn),是否存在定直線:,使得與的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù))。
若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時(shí),曲線與曲線有兩個(gè)交點(diǎn).求的值;
(2)若曲線與曲線只有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn)。若分別過橢圓的左右焦點(diǎn)、的動直線、相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率、、、滿足.
(1)求橢圓的方程;
(2)是否存在定點(diǎn)M、N,使得為定值.若存在,求出M、N點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線和橢圓都經(jīng)過點(diǎn),它們在軸上有共同焦點(diǎn),橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點(diǎn),點(diǎn)都滿足,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com