已知函數(shù)f(x)=log3(8-2x-x2),設(shè)其值域是M,
(1)求函數(shù)f(x)的值域M;
(2)若函數(shù)g(x)=4x-21+x-m在M內(nèi)有零點,求m的取值范圍.
分析:(1)確定函數(shù)的定義域,從而確定真數(shù)的范圍,即可求得函數(shù)的值域;
(2)當x∈(-∞,2]時,有t=2x∈(0,4],函數(shù)g(x)=4x-21+x-m在M內(nèi)有零點等價于關(guān)于t的方程:m=t2-2t在(0,4]內(nèi)有解,求出函數(shù)的值域,即可求m的取值范圍.
解答:解:(1)設(shè)u=8-2x-x2,則由8-2x-x2>0,可得-4<x<2…(2分)
則u=8-2x-x2=9-(x+1)2∈(0,9],…(4分)
∴y=log3u∈(-∞,2],即函數(shù)f(x)的值域M=(-∞,2]…(6分)
(2)∵當x∈(-∞,2]時,有t=2x∈(0,4],
又4x-21+x=(2x2-2•2x=t2-2t…(8分)
∴函數(shù)g(x)=4x-21+x-m在M內(nèi)有零點等價于關(guān)于t的方程:m=t2-2t在(0,4]內(nèi)有解,…(10分)
而t2-2t=(t-1)2-1∈[-1,8]
∴m∈[-1,8]…(12分)
點評:本題考查復(fù)合函數(shù)的值域,考查函數(shù)的零點,考查學(xué)生分析轉(zhuǎn)化問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
(2)當a<3時,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達式和切線l的方程;
(2)當x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標為1.
(1)求直線l的方程及a的值;
(2)當k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實數(shù),x∈R,a∈R.
(1)當1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案