【題目】已知: 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

【答案】
(1)解:設(shè)

且| |=2

∴x=±2

=(2,4)或 =(﹣2,﹣4)


(2)解:∵( +2 )⊥(2

∴( +2 )(2 )=0

∴2 2+3 ﹣2 2=0

∴2| |2+3| || |cosθ﹣2| |2=0

∴2×5+3× × cosθ﹣2× =0

∴cosθ=﹣1

∴θ=π+2kπ

∵θ∈[0,π]

∴θ=π


【解析】(1)設(shè)出 的坐標(biāo),利用它與 平行以及它的模等于2 ,待定系數(shù)法求出 的坐標(biāo).(2)由 +2 與2 垂直,數(shù)量積等于0,求出夾角θ的余弦值,再利用夾角θ的范圍,求出此角的大小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),圓C ,

(1)過(guò)點(diǎn)向圓C引切線l,求切線l的方程;

(2)過(guò)點(diǎn)A作直線 交圓C于P,Q,且,求直線的斜率k;

(3)定點(diǎn)M,N在直線 上,對(duì)于圓C上任意一點(diǎn)R都滿(mǎn)足,試求M,N兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若3cos(2α+β)+5cosβ=0,則tan(α+β)tanα的值為(
A.±4
B.4
C.﹣4
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式(m﹣1)x2﹣mx+m﹣1>0的解集為空集,則實(shí)數(shù)m的取值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的三內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,設(shè)向量 , ,若
(1)求角B的大。
(2)若△ABC的面積為 ,求AC邊的最小值,并指明此時(shí)三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)、,動(dòng)點(diǎn)滿(mǎn)足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,將曲線上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的一半,橫坐標(biāo)不變,得到曲線.

(1)求曲線的方程;

(2)是曲線上兩點(diǎn),且 為坐標(biāo)原點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2).
(1)求a的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí)f(x)=
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性(不必證明);
(3)若對(duì)任意的t∈R,不等式f(k﹣3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的焦點(diǎn)為F,直線y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.

1)求C的方程;

2)過(guò)F的直線C相交于A,B兩點(diǎn),若AB的垂直平分線C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案