【題目】設(shè)函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2).
(1)求a的值;
(2)解不等式 .
【答案】
(1)解:∵函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2),
∴﹣1+2=﹣ ,∴a=﹣4
(2)解:不等式轉(zhuǎn)化為(4x+m)(﹣4x+2)>0,
可得m=﹣2,不等式的解集為;
m<﹣2,不等式的解集為{x| };
m>﹣2,不等式的解集為{x|﹣ }
【解析】(1)利用韋達(dá)定理,建立方程,即可求a的值;(2)不等式轉(zhuǎn)化為(4x+m)(﹣4x+2)>0,分類討論,解不等式.
【考點(diǎn)精析】通過靈活運(yùn)用解一元二次不等式,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長沙市物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進(jìn)行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點(diǎn)圖:
定價 | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù): ,
)
(1)根據(jù)散點(diǎn)圖判斷, 與和與哪一對具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價為多少元/ 時,年銷售額的預(yù)報值最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在圓: 上,而為在軸上的投影,且點(diǎn)滿足,設(shè)動點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上兩點(diǎn),且, 為坐標(biāo)原點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a1=3,an=2an﹣1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*)
(1)t=0,m=0時,求證: 是等差數(shù)列;
(2)t=﹣1,m= 是等比數(shù)列;
(3)t=0,m=1時,求數(shù)列{an}的通項公式和前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某社區(qū)工會對當(dāng)?shù)仄髽I(yè)工人月收入情況進(jìn)行一次抽樣調(diào)查后畫出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為( )
A.1000
B.2000
C.3000
D.4000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次測驗共有4個選擇題和2個填空題,每答對一個選擇題得20分,每答對一個填空題得10分,答錯或不答得0分,若某同學(xué)答對每個選擇題的概率均為 ,答對每個填空題的概率均為 ,且每個題答對與否互不影響.
(1)求該同學(xué)得80分的概率;
(2)若該同學(xué)已經(jīng)答對了3個選擇題和1個填空題,記他這次測驗的得分為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 過點(diǎn), 為橢圓的半焦距,且,過點(diǎn)作兩條互相垂直的直線, 與橢圓分別交于另兩點(diǎn), .
(1)求橢圓的方程;
(2)若直線的斜率為,求的面積;
(3)若線段的中點(diǎn)在軸上,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com