給定拋物線,是拋物線的焦點(diǎn),過點(diǎn)的直線與相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)設(shè)的斜率為1,求以為直徑的圓的方程;
(2)設(shè),求直線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)本題共3個(gè)小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分8分.
在平面直角坐標(biāo)系中,對(duì)于直線:和點(diǎn)記若<0,則稱點(diǎn)被直線分隔.若曲線C與直線沒有公共點(diǎn),且曲線C上存在點(diǎn)被直線分隔,則稱直線為曲線C的一條分隔線.
⑴求證:點(diǎn)被直線分隔;
⑵若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;
⑶動(dòng)點(diǎn)M到點(diǎn)的距離與到軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求證:通過原點(diǎn)的直線中,有且僅有一條直線是E的分割線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上截距相等,求切線的方程;
(2)若為圓C上任意一點(diǎn),求的最大值與最小值;
(3)從圓C外一點(diǎn)P(x,y)向圓引切線PM,M為切點(diǎn),O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求當(dāng)|PM|最小時(shí)的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線的方程為.
(1)若在兩坐標(biāo)軸上的截距相等,求的方程;
(2)若不經(jīng)過第二象限,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)A(3,3),B(5,2)到直線l的距離相等,且直線l經(jīng)過兩直線l1:3x-y-1=0和l2:x+y-3=0的交點(diǎn),求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com