已知數(shù)列滿足:其中,數(shù)列滿足:
(1)求;
(2)求數(shù)列的通項公式;
(3)是否存在正數(shù)k,使得數(shù)列的每一項均為整數(shù),如果不存在,說明理由,如果存在,求出所有的k.
(1)(2)(3)的取值集合是
解析試題分析:(1)先由遞推公式求出
再用遞推公式求出 ;
(2)由
兩式相減可得 即: ,于是結合(1)的結論可得 .
(3)對于這類問題通常的做法是假設 的值存在,由(1)的結果知,
或 ,接下來可用數(shù)學歸納法證明結論成立即可.
試題解析:(1)經(jīng)過計算可知:
.
求得. (4分)
(2)由條件可知:. ①
類似地有:. ②
①-②有:.
即:.
因此:
即:故
所以:. (8分)
(3)假設存在正數(shù),使得數(shù)列的每一項均為整數(shù).
則由(2)可知: ③
由,及可知.
當時,為整數(shù),利用,結合③式,反復遞推,可知,,,, 均為整數(shù).
當時,③變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/79/4/eskdb1.png" style="vertical-align:middle;" /> ④
我們用數(shù)學歸納法證明為偶數(shù),為整數(shù)
時,結論顯然成立,假設時結論成立,這時為偶數(shù),為整數(shù),故為偶數(shù),為整數(shù),所以時,命題成立.
故數(shù)列是整數(shù)列.
綜上所述,的取值集合是. (14分)
考點:1、數(shù)列的遞推公式;2、數(shù)學歸納法.
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{}滿足+=2n+1 ()
(1)求出,,的值;
(2)由(1)猜想出數(shù)列{}的通項公式,并用數(shù)學歸納法證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列和的通項公式分別為,.將與中的公共項按照從小到大的順序排列構成一個新數(shù)列記為.
(1)試寫出,,,的值,并由此歸納數(shù)列的通項公式;
(2)證明你在(1)所猜想的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在上的最大值為
求數(shù)列的通項公式;
求證:對任何正整數(shù),都有;
設數(shù)列的前項和,求證:對任何正整數(shù),都有成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com