已知
(1)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(2)若時(shí),求證成立;
(3)利用(2)的結(jié)論證明:若
(1)(2)見解析(3)見解析
(1),
有單調(diào)減區(qū)間,有解
,有解
時(shí)合題意
時(shí),,即,的范圍是
(2)設(shè),



0


+
0
-


最大值

           ∴當(dāng)x=0時(shí),Φ(x)有最大值0,恒成立
成立                                                                                 (8分)
(3)


 
求證成立                                                                                                                    (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分) 已知函數(shù)圖象上一點(diǎn)處的切線方程為.(Ⅰ)求的值;(Ⅱ)若方程內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù));(Ⅲ)令,若的圖象與軸交于,(其中),的中點(diǎn)為,求證:處的導(dǎo)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知 函數(shù)f(x)=的圖像關(guān)于原點(diǎn)對(duì)稱,其中m,n為實(shí)常數(shù)。
(1)求m , n的值;
(2)試用單調(diào)性的定義證明:f (x) 在區(qū)間[-2, 2] 上是單調(diào)函數(shù);
(3)[理科做] 當(dāng)-2≤x≤2 時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

y=esinxcos(sinx),則yˊ(0)等于(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(a∈R).
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)時(shí),求單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意,恒有
成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)若,函數(shù)是否有極值,若有則求出極值,若沒有,請(qǐng)說明理由.
(Ⅱ)若在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知常數(shù)、、都是實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為
(Ⅰ)設(shè),求函數(shù)的解析式;
(Ⅱ)如果方程的兩個(gè)實(shí)數(shù)根分別為、,并且
問:是否存在正整數(shù),使得?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,
(1)若的取值范圍;
(2)若的圖象與的圖象恰有3個(gè)交點(diǎn)?若存在求出的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求下列函數(shù)的導(dǎo)數(shù):
(1);(2);(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案