【題目】已知函數(shù)f(x)=sin2ωx(ω>0),將y=f(x)的圖象向右平移 個單位長度后,若所得圖象與原圖象重合,則ω的最小值等于(
A.2
B.4
C.6
D.8

【答案】B
【解析】解:∵將f(x)向右平移 個單位長度與原圖象重合,
∴f(x)=f(x﹣ ),
即sin2ωx=sin2ω(x﹣ )=sin(2ωx﹣ ),
∴﹣ =2kπ,解得ω=﹣4k,k∈Z.
∵ω>0,∴當(dāng)k=﹣1時,ω取得最小值4.
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個頻

率分布直方圖;

統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)

值作為代表,據(jù)此估計(jì)本次考試的平均分;

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是正奇數(shù),數(shù)列{cn}(n∈N*)定義如下:c1=a,c2=b,對任意n≥3,cn是cn1+cn2的最大奇約數(shù).?dāng)?shù)列{cn}中的所有項(xiàng)構(gòu)成集合A.
(1)若a=9,b=15,寫出集合A;
(2)對k≥1,令dk=max{c2k , c2k1}(max{p,q}表示p,q中的較大值),求證:dk+1≤dk;
(3)證明集合A是有限集,并寫出集合A中的最小數(shù).】

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實(shí)根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+
(I) 當(dāng)a= 時,判斷f(x)在其定義上的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在高二年級實(shí)行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計(jì)如表:

課程

數(shù)學(xué)1

數(shù)學(xué)2

數(shù)學(xué)3

數(shù)學(xué)4

數(shù)學(xué)5

合計(jì)

選課人數(shù)

180

540

540

360

180

1800

為了了解數(shù)學(xué)成績與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取了10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機(jī)抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為X,選擇數(shù)學(xué)1的人數(shù)為Y,設(shè)隨機(jī)變量ξ=X﹣Y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線被圓所截得的弦的中點(diǎn)為P53).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中內(nèi)動點(diǎn)P(x,y)到圓F:x2+(y﹣1)2=1的圓心F的距離比它到直線y=﹣2的距離小1.
(1)求動點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡為曲線E,過點(diǎn)F的直線l的斜率為k,直線l交曲線E于A,B兩點(diǎn),交圓F于C,D兩點(diǎn)(A,C兩點(diǎn)相鄰).
①若 =t ,當(dāng)t∈[1,2]時,求k的取值范圍;
②過A,B兩點(diǎn)分別作曲線E的切線l1 , l2 , 兩切線交于點(diǎn)N,求△ACN與△BDN面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折疊后的線段AD上是否存在一點(diǎn)P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A﹣CDF的體積的最大值,并求此時二面角E﹣AC﹣F的余弦值.

查看答案和解析>>

同步練習(xí)冊答案