【題目】已知拋物線經(jīng)過點,直線分別與拋物線交于點,若直線的斜率之和為零,則直線的斜率為_________。

【答案】-2

【解析】

P(1,4)代入y2=2px可解得p=8,得拋物線方程為y2=16x,在設(shè)出直線PA的方程并與拋物線方程聯(lián)立解得A的坐標,同理解得B的坐標,最后用斜率公式可求得AB的斜率為定值﹣2.

因為拋物線C:y2=2px經(jīng)過點P(1,4),∴p=8,∴拋物線C:y2=16x,設(shè)直線PA:y﹣4=k(x﹣1),并代入y2=16x消去x并整理得k2x2+(8k﹣2k2﹣16)xx+(4﹣k)2=0,

設(shè)A(x1,y1),B(x2,y2)依題意知1x1是以上一元二次方程的兩個根,∴1x1,∴x1 ,∴y1=4﹣k+kx1=4﹣k+k﹣4,同理得x2,y2=﹣﹣4,所以直線AB的斜率為:

故答案為:﹣2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一場小型晚會有個唱歌節(jié)目和個相聲節(jié)目,要求排出一個節(jié)目單.

1個相聲節(jié)目要排在一起,有多少種排法?

2個相聲節(jié)目彼此要隔開,有多少種排法?

3)第一個節(jié)目和最后一個節(jié)目都是唱歌節(jié)目,有多少種排法?

4)前個節(jié)目中要有相聲節(jié)目,有多少種排法?

(要求:每小題都要有過程,且計算結(jié)果都用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

1)求上的單調(diào)區(qū)間;

2)當時,設(shè)函數(shù)時,證明

3)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,垂直平面,,,的中點.

(Ⅰ) 證明:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

不愿生

總計

附表:

算得,參照附表,得到的正確結(jié)論是( )

A. 在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別有關(guān)”

B. 以上的把握認為“生育意愿與城市級別有關(guān)”

C. 在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別無關(guān)”

D. 以上的把握認為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為是橢圓上的點,且的面積為

(1)求橢圓的方程;

(2)若斜率為且在軸上的截距為的直線與橢圓相交于兩點,若橢圓上存在點,滿足,其中是坐標原點,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年“雙十一”期間,某商場舉辦了一次有獎促銷活動,顧客消費每滿1000元可參加一次抽獎(例如:顧客甲消費930元,不得參與抽獎;顧客乙消費3400元,可以抽獎三次)。如圖1,在圓盤上繪制了標有A,B,C,D的八個扇形區(qū)域,每次抽獎時由顧客按動按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時指針會隨機停在圓盤上的某一個位置,顧客獲獎的獎次由指針所指區(qū)域決定(指針與區(qū)域邊界線粗細忽略不計)。商家規(guī)定:指針停在標A,B,C,D的扇形區(qū)域分別對應(yīng)的獎金為200元、150元、100元和50元。已知標有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標D的扇形區(qū)域的圓心角是標A的扇形區(qū)域的圓心角的4倍.

(I)某顧客只抽獎一次,設(shè)該顧客抽獎所獲得的獎金數(shù)為X元,求X的分布列和數(shù)學期望;

(II)如圖2,該商場統(tǒng)計了活動期間一天的顧客消費情況.現(xiàn)按照消費金額分層抽樣選出15位顧客代表,其中獲得獎金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機選取兩位,求這兩位顧客的獎金總數(shù)和仍不足100元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數(shù);

(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;

(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)),當為何值時,該計劃所需總費用最?

查看答案和解析>>

同步練習冊答案