【題目】如圖,四棱錐中,垂直平面,,,,的中點(diǎn).

(Ⅰ) 證明:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)見(jiàn)證明 (Ⅱ)

【解析】

(Ⅰ)可證 平面,從而得到平面平面

(Ⅱ)在平面內(nèi)過(guò)的垂線,垂足為,由(1)可知平面,從而就是所求的線面角,利用解直角三角形可得其正弦值

證明: 平面,平面,

,所以,即 ,所以平面,

因?yàn)?/span>平面,所以平面平面

平面,平面,所以

在平面內(nèi),過(guò)點(diǎn),垂足為

由(Ⅰ)知平面平面平面,平面平面 所以平面

由面積法得:即

又點(diǎn)的中點(diǎn),.所以

又點(diǎn)的中點(diǎn),所以點(diǎn)到平面的距離與點(diǎn)到平面的距離相等.

連結(jié)于點(diǎn),則

所以點(diǎn)到平面的距離是點(diǎn)到平面的距離的一半,即

所以直線與平面所成角的正弦值為

另解:如圖,取的中點(diǎn),如圖建立坐標(biāo)系.

因?yàn)?/span>,所以.所以有:

,,,,,

設(shè)平面的一個(gè)法量為,則

取,得 ,.即

設(shè)直線與平面所成角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與曲線分別交于兩點(diǎn),點(diǎn)的坐標(biāo)為,則面積的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程:

已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸非負(fù)半軸重合,直線l的參數(shù)方程為:t為參數(shù),a∈[0,π),曲線C的極坐標(biāo)方程為:p=2cosθ.

(Ⅰ)寫(xiě)出曲線C在直角坐標(biāo)系下的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線l與曲線C相交PQ兩點(diǎn),若|PQ|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線

(1)寫(xiě)出的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),的交點(diǎn),求的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過(guò)Mx軸的垂線,垂足為N,點(diǎn)P滿足.

1)求點(diǎn)P的軌跡方程;

(2)設(shè)點(diǎn)Q在直線上,且。證明:過(guò)點(diǎn)P且垂直于OQ的直線l過(guò)C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,下列函數(shù)中,在其定義域內(nèi)是單調(diào)遞增函數(shù)且圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn),直線分別與拋物線交于點(diǎn),若直線的斜率之和為零,則直線的斜率為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像相鄰兩條對(duì)稱(chēng)軸間的距離為,且,則以下命題中為假命題的是(

A.函數(shù)上是增函數(shù).

B.函數(shù)圖像關(guān)于點(diǎn)對(duì)稱(chēng)

C.函數(shù)的圖象可由的圖象向左平移個(gè)單位長(zhǎng)度得到

D.函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)面B1BCC1是正方形,MN分別是A1B1,AC的中點(diǎn),AB⊥平面BCM

(Ⅰ)求證:平面B1BCC1⊥平面A1ABB1;

(Ⅱ)求證:A1N∥平面BCM

(Ⅲ)若三棱柱ABC-A1B1C1的體積為10,求棱錐C1-BB1M的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案