【題目】已知函數(shù)的圖像相鄰兩條對稱軸間的距離為,且,則以下命題中為假命題的是( )
A.函數(shù)在上是增函數(shù).
B.函數(shù)圖像關(guān)于點對稱
C.函數(shù)的圖象可由的圖象向左平移個單位長度得到
D.函數(shù)的圖象關(guān)于直線對稱
【答案】A
【解析】
根據(jù)三角函數(shù)的圖像性質(zhì),依次分析選項內(nèi)容即可求解
相鄰兩條對稱軸間的距離為,,
得,,得,
,,
,得,
對于A,的單調(diào)增區(qū)間為,
化簡得,,
故明顯地,當(dāng)時,
不滿足函數(shù)在上是增函數(shù),A不符合題意.
對于B,根據(jù),可求得的對稱點為,,
明顯地,當(dāng)時,有函數(shù)圖像關(guān)于點對稱,故B符合題意
對于C,,明顯有,
明顯可得函數(shù)的圖象可由的圖象向左平移個單位長度得到,
故C符合題意.
對于D,根據(jù),化簡得,,
當(dāng)時,滿足函數(shù)的圖象關(guān)于直線對稱,故D符合題意.
故選:A
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方體中,底面ABCD的長AB=4,寬BC=4,高=3,點M,N分別是BC,的中點,點P在上底面中,點Q在上,若,則PQ長度的最小值是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,是橢圓上的點,且的面積為。
(1)求橢圓的方程;
(2)若斜率為且在軸上的截距為的直線與橢圓相交于兩點,若橢圓上存在點,滿足,其中是坐標(biāo)原點,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年“雙十一”期間,某商場舉辦了一次有獎促銷活動,顧客消費每滿1000元可參加一次抽獎(例如:顧客甲消費930元,不得參與抽獎;顧客乙消費3400元,可以抽獎三次)。如圖1,在圓盤上繪制了標(biāo)有A,B,C,D的八個扇形區(qū)域,每次抽獎時由顧客按動按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時指針會隨機停在圓盤上的某一個位置,顧客獲獎的獎次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線粗細(xì)忽略不計)。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對應(yīng)的獎金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.
(I)某顧客只抽獎一次,設(shè)該顧客抽獎所獲得的獎金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;
(II)如圖2,該商場統(tǒng)計了活動期間一天的顧客消費情況.現(xiàn)按照消費金額分層抽樣選出15位顧客代表,其中獲得獎金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機選取兩位,求這兩位顧客的獎金總數(shù)和仍不足100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,若關(guān)于的不等式恒成立,求的取值范圍;
(2)當(dāng)時,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學(xué)生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機抽取1人,求該學(xué)生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出對農(nóng)村要堅持精準(zhǔn)扶貧,至 2020 年底全面脫貧. 現(xiàn)有扶貧工作組到某山區(qū)貧困村實施脫貧工作. 經(jīng)摸底排查,該村現(xiàn)有貧困農(nóng)戶 100 家,他們均從事水果種植, 2017 年底該村平均每戶年純收入為 1 萬元,扶貧工作組一方面請有關(guān)專家對水果進(jìn)行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷售工作,其人數(shù)必須小于種植的人數(shù). 從 2018 年初開始,若該村抽出 5x 戶( x ∈Z,1 ≤x ≤ 9) 從事水果包裝、銷售.經(jīng)測算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷售農(nóng)戶的年純收入每戶平均為 (3-x) 萬元(參考數(shù)據(jù): 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).
(1) 至 2020 年底,為使從事水果種植農(nóng)戶能實現(xiàn)脫貧(每戶年均純收入不低于 1 萬 6 千元),至少抽出多少戶從事包裝、銷售工作?
(2) 至 2018 年底,該村每戶年均純收人能否達(dá)到 1.35 萬元?若能,請求出從事包裝、銷售的戶數(shù);若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點與橢圓的一個焦點重合,橢圓的左、右頂點分別為,是橢圓上一點,記直線的斜率為、,且有.
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于不同兩點和,且滿足(為坐標(biāo)原點),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com