【題目】已知f(x)=x3﹣3x,過點(diǎn)P(2,2)作函數(shù)y=f(x)圖象的切線,則切線方程為_____
【答案】y=9x-16或y=2
【解析】
當(dāng)為切點(diǎn)時(shí),利用導(dǎo)數(shù)求得斜率,由此求得切線方程.當(dāng)不是切點(diǎn)時(shí),設(shè)出切點(diǎn)坐標(biāo),求得斜率,根據(jù)點(diǎn)斜式寫出切線方程,將點(diǎn)代入切線方程,求得的值,由此求得切線方程.
解:y'=-3+3x2
當(dāng)點(diǎn)P為切點(diǎn)時(shí),y'|x=2=9,得到切線的斜率為9,
所求的切線方程為y=9x﹣16,
當(dāng)P點(diǎn)不是切點(diǎn)時(shí),設(shè)切點(diǎn)為(m,m3﹣3m)
則切線的斜率為3m2﹣3,切線方程為y﹣m3+3m=(3m2﹣3)(x﹣m)
而切線過(2, 2),2﹣m3+3m=(3m2﹣3)(2﹣m)
解得m=-1或2(舍去)
∴切點(diǎn)為(-1, 2),斜率為0,所求的切線方程為y=2
故答案為:y=9x-16或y=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如下圖所示的頻率分布直方圖.
(I)寫出a的值;
(II)試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
(III)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)有1000人,某次數(shù)學(xué)考試不同成績(jī)段的人數(shù).
(1)求該校此次數(shù)學(xué)考試平均成績(jī);
(2)計(jì)算得分超過141的人數(shù);
(3)甲同學(xué)每次數(shù)學(xué)考試進(jìn)入年級(jí)前100名的概率是,若本學(xué)期有4次考試, 表示進(jìn)入前100名的次數(shù),寫出的分布列,并求期望與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中, , , 是的中點(diǎn),以為折痕將向上折起, 變?yōu)?/span>,且平面平面.
(Ⅰ)求證: ;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各一元二次不等式中,解集為空集的是( 。
A.(x+3)(x﹣1)>0B.(x+4)(x﹣1)<0
C.x2﹣2x+3<0D.2x2﹣3x﹣2>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備將萬(wàn)元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個(gè)建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤(rùn)(萬(wàn)元)的概率分布列如表所示:
且的期望;若投資乙項(xiàng)目一年后可獲得的利潤(rùn)(萬(wàn)元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價(jià)格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為和.若乙項(xiàng)目產(chǎn)品價(jià)格一年內(nèi)調(diào)整的次數(shù)(次數(shù))與的關(guān)系如表所示:
(Ⅰ)求的值;
(Ⅱ)求的分布列;
(Ⅲ)若該公司投資乙項(xiàng)目一年后能獲得較多的利潤(rùn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若,不等式有且只有兩個(gè)整數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,在空間中到三條棱所在直線距離相等的點(diǎn)的個(gè)數(shù)( )
A. 0B. 2C. 3D. 無(wú)數(shù)個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com