【題目】某校高三年級有1000人,某次數(shù)學(xué)考試不同成績段的人數(shù)

(1)求該校此次數(shù)學(xué)考試平均成績;

(2)計算得分超過141的人數(shù);

(3)甲同學(xué)每次數(shù)學(xué)考試進(jìn)入年級前100名的概率是,若本學(xué)期有4次考試, 表示進(jìn)入前100名的次數(shù),寫出的分布列,并求期望與方差.

【答案】(1)23;(2)見解析

【解析】試題分析:1由不同成績段的人數(shù)服從正態(tài)分布,可知平均成績;(2,141分以上的人數(shù)為;(3的取值范圍為0,1,2,3,4,求出相應(yīng)的概率值,得到分布列及期望與方差.

試題解析:

(1)由不同成績段的人數(shù)服從正態(tài)分布,可知平均成績.

2

故141分以上的人數(shù)為人.

3的取值范圍為0,1,2,3,4,

, , ,

, ,

的分布列為:

0

1

2

3

4

期望,

方差

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2010年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示。

1)求第3、4、5組的頻率;

2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少學(xué)生進(jìn)入第二輪面試?

3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值和最小值.設(shè)

1)求的值

2)若不等式上有解,求實數(shù)的取值范圍;

3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在推導(dǎo)很多三角恒等變換公式時,我們可以利用平面向量的有關(guān)知識來研究,在一定程度上可以簡化推理過程.如我們就可以利用平面向量來推導(dǎo)兩角差的余弦公式:

具體過程如下:

如圖,在平面直角坐標(biāo)系內(nèi)作單位圓O,以為始邊作角.它們的終邊與單位圓O的交點分別為A,B.

由向量數(shù)量積的坐標(biāo)表示,有:

設(shè)的夾角為θ,則

另一方面,由圖3.131)可知,;由圖可知,

.于是.

所以,也有,

所以,對于任意角有:

此公式給出了任意角的正弦、余弦值與其差角的余弦值之間的關(guān)系,稱為差角的余弦公式,簡記作.

有了公式以后,我們只要知道的值,就可以求得的值了.

閱讀以上材料,利用下圖單位圓及相關(guān)數(shù)據(jù)(圖中MAB的中點),采取類似方法(用其他方法解答正確同等給分)解決下列問題:

1)判斷是否正確?(不需要證明)

2)證明:

3)利用以上結(jié)論求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(一)在函數(shù)圖象的學(xué)習(xí)中常常用到化歸轉(zhuǎn)化的思想,往往通過對一些已經(jīng)學(xué)習(xí)過的函數(shù)圖象的研究,進(jìn)一步遷移到其它函數(shù),例如函數(shù)與正弦函數(shù)就有密切的聯(lián)系,因為.只需將軸下方的圖象翻折到上方,就得到的圖象.

(二)在研究函數(shù)零點問題時,往往會將函數(shù)零點問題轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.例如研究函數(shù)的零點就可以轉(zhuǎn)化為函數(shù)與函數(shù)的圖象交點來進(jìn)行處理,通過作圖不僅知道函數(shù)有且僅有一個零點,還可以確定零點.這體現(xiàn)了化歸轉(zhuǎn)化與數(shù)形結(jié)合的思想在函數(shù)研究中的應(yīng)用.

結(jié)合閱讀材料回答下面兩個問題:

作出函數(shù)的圖象;

利用作圖的方法驗證函數(shù)有且僅有兩個零點.若記兩個零點分別為,,證明:.(注:在同一坐標(biāo)中作圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有72,108120人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取25人調(diào)查專項附加扣除的享受情況.

項目

員工

A

B

C

D

E

F

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養(yǎng)老人

×

×

×

1)應(yīng)從老、中、青員工中分別抽取多少人?

2)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為A,B,CD,E,F.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機抽取2人接受采訪.

①試用所給字母列舉出所有可能的抽取結(jié)果;

②設(shè)M為事件抽取的2人享受的專項附加扣除至少有一項相同,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)=x3﹣3x,過點P(2,2)作函數(shù)yfx)圖象的切線,則切線方程為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是r)

查看答案和解析>>

同步練習(xí)冊答案