【題目】如圖,三棱柱中,D的中點.

1)證明:平面

2)若是邊長為2的正三角形,且,,平面平面.求平面與側面所成二面角的正弦值.

【答案】1)見解析(2

【解析】

1)連接,記,連接,證明得到答案.

2)證明,,兩兩互相垂直,建立空間直角坐標系,計算平面和平面的法向量,利用向量夾角公式得到答案.

1)連接,記,連接,故中點,

D的中點,所以,又平面,平面.

平面.

2)取邊中點點O,連接,因為為等邊三角形,,所以,

又平面平面,且平面平面,

平面,所以,,兩兩互相垂直.

故以O為原點,建立空間直角坐標系如圖所示:

則由題意可知,.

設平面的法向量,則,即,

,解得,得.

顯然平面的一個法向量為.

∴二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面為平行四邊形,且,點M的中點,,且平面平面.

1)求證:平面平面;

2)當直線與平面所成角的正切值為時,求四棱錐的體積及平面將四棱錐分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的直角坐標方程,并求時直線的普通方程;

2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自由購是一種通過自助結算購物的形式.某大型超市為調查顧客自由購的使用情況,隨機抽取了100人,調查結果整理如下:

20以下

[20,30

[3040

[40,50

[50,60

[60,70]

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

1)現(xiàn)隨機抽取1名顧客,試估計該顧客年齡在[30,50)且未使用自由購的概率;

2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在[50,60)的概率;

3)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關關系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,分別為,的中點是由繞直線旋轉得到,連結,.

1)證明:平面;

2)若,棱上是否存在一點,使得?若存在,確定點 的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代教育要求學生掌握六藝,即禮、樂、射、御、書、數(shù).某校為弘揚中國傳統(tǒng)文化,舉行有關六藝的知識競賽.甲、乙、丙三位同學進行了決賽.決賽規(guī)則:決賽共分場,每場比賽的第一名、第二名、第三名的得分分別為,選手最后得分為各場得分之和,決賽結果是甲最后得分為分,乙和丙最后得分都為分,且乙在其中一場比賽中獲得第一名,現(xiàn)有下列說法:

①每場比賽第一名得分分;

②甲可能有一場比賽獲得第二名;

③乙有四場比賽獲得第三名;

④丙可能有一場比賽獲得第一名.

則以上說法中正確的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某沙漠地區(qū)經過治理,生態(tài)系統(tǒng)得到很大改善,野生動物數(shù)量有所增加.為調查該地區(qū)某種野生動物的數(shù)量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣區(qū),調查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,20),其中xiyi分別表示第i個樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動物的數(shù)量,并計算得,,.

1)求該地區(qū)這種野生動物數(shù)量的估計值(這種野生動物數(shù)量的估計值等于樣區(qū)這種野生動物數(shù)量的平均數(shù)乘以地塊數(shù));

2)求樣本(xiyi)(i=1,2,20)的相關系數(shù)(精確到0.01);

3)根據(jù)現(xiàn)有統(tǒng)計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動物數(shù)量更準確的估計,請給出一種你認為更合理的抽樣方法,并說明理由.

附:相關系數(shù)r=,≈1.414.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一個負數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案