【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的直角坐標方程,并求時直線的普通方程;

2)直線和曲線交于兩點,點的直角坐標為,求的最大值.

【答案】1, ;(2

【解析】

1)把兩邊同時乘以,然后結合極坐標與直角坐標的互化公式可得曲線的直角坐標方程,由直線的參數(shù)方程可知直線過定點,并求得直線的斜率,即可寫出直線的普通方程;

2)把直線的參數(shù)方程代入曲線的普通方程,化為關于的一元二次方程,利用判別式、根與系數(shù)的關系及此時的幾何意義求解.

解:(1)∵,∴,

∴曲線的直角坐標方程為,

時,直線的普通方程為;

2)把直線的參數(shù)方程為代入,

,

,,則同號且小于0,

得:,

,

的最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其導函數(shù)為.

1)討論函數(shù)的單調(diào)性;

2)若,關于的不等式恒成立,求實數(shù)的取值范圍;

3)若函數(shù)有兩個零點,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.

1)求出動點的軌跡的標準方程;

2)設動直線與曲線有且僅有一個公共點,與圓相交于兩點(兩點均不在坐標軸上),求直線的斜率之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱-的底面是邊長為2的等邊三角形,底面,點分別是棱上的點,且

(Ⅰ)證明:平面平面;

(II)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù), ,函數(shù) (其中是自然對數(shù)的底數(shù)).

(1)過坐標原點作曲線的切線,設切點為,求證: ;

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,的前n項和為.若對任意的恒成立.

1)求數(shù)列,的通項公式;

2)若數(shù)列滿足問:是否存在正整數(shù),使得,若存在求出的值,若不存在,說明理由;

3)若存在各項均為正整數(shù)公差為的無窮等差數(shù)列,滿足,且存在正整數(shù),使得成等比數(shù)列,求的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正六棱錐的底面邊長為,高為.現(xiàn)從該棱錐的個頂點中隨機選取個點構成三角形,設隨機變量表示所得三角形的面積.

(1)求概率的值;

(2)求的分布列,并求其數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P是圓上任意一點,F2(1,0),線段PF2的垂直平分線與半徑PF1交于點Q,當點P在圓F1上運動時,記點Q的軌跡為曲線C.

1)求曲線C的方程;

2)過點的直線l與(1)中曲線相交于A,B兩點,O為坐標原點,求△AOB面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

同步練習冊答案