不等式:
.
x+11
-1x
.
≤1的解集是
 
考點(diǎn):不等式
專題:不等式的解法及應(yīng)用
分析:利用行列式的運(yùn)算法則可得:x(x+1)-(-1)≤1,再利用一元二次不等式的解法即可得出.
解答: 解:不等式:
.
x+11
-1x
.
≤1化為x(x+1)-(-1)≤1,即x2+x≤0,解得-1≤x≤0.
因此不等式的解集為{x|-1≤x≤0}.
故答案為:{x|-1≤x≤0}.
點(diǎn)評(píng):本題考查了行列式的運(yùn)算法則、一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的一元二次不等式ax2-5x-50>0的解集為(x1,x2),且x2-x1=15,則a=(  )
A、-1
B、1
C、-
1
9
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

循環(huán)小數(shù)0.4
3
1
,化成分?jǐn)?shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電子廠商投產(chǎn)一種新型電子廠品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價(jià)-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬元的利潤?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將十進(jìn)制數(shù)45化為二進(jìn)制數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用簡(jiǎn)單隨機(jī)抽樣從含有6個(gè)個(gè)體的總體中抽取一個(gè)容量為3的樣本,則總體中每個(gè)個(gè)體被抽到的概率是( 。
A、
1
2
B、
1
3
C、
1
6
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-2x-3<0},B={x|
1
2
2x<4}
,則A∩B等于(  )
A、{x|-1<x<2}
B、{x|-1<x<3}
C、{x|-3<x<2}
D、{x|-3<x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各題:
(1)(125)
2
3
+(
1
2
)-2-
4(3-π)4
+
3π3

(2)log2
7
48
+log212-
1
2
log242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三進(jìn)制數(shù)120(3)化為十進(jìn)制數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案