【題目】近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院人進行了問卷調查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關?請說明你的理由;
(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導市民盡可能地減少因霧霾天氣對身體的傷害,現從不患心肺疾病的位男性中,選出人進行問卷調查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.
下面的臨界值表供參考:
(參考公式,其中)
【答案】(1)列聯(lián)表見解析,有的把握認為患心肺疾病與性別有關,理由見解析;(2).
【解析】
(1)結合題意完善列聯(lián)表,計算出的觀測值,對照臨界值表可得出結論;
(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數,利用古典概型的概率公式可取得所求事件的概率.
(1)由于在全部人中隨機抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數為人,故可將列聯(lián)表補充如下:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
.
故有的把握認為患心肺疾病與性別有關;
(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:
、、、、、、、、、.
其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、、、,
所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.
科目:高中數學 來源: 題型:
【題目】現有甲、乙兩種不同規(guī)格的產品,其質量按測試指標分數進行劃分,其中分數不小于分的為合格品,否則為次品.現隨機抽取兩種產品各件進行檢測,其結果如下:
測試指數分數 | |||||
甲產品 | |||||
乙產品 |
(1)根據以上數據,完成下邊的列聯(lián)表,并判斷是否有的有把握認為兩種產品的質量有明顯差異?
甲產品 | 乙產品 | 合計 | |
合格品 | |||
次品 |
(2)已知生產件甲產品,若為合格品,則可盈利元,若為次品,則虧損元;生產件乙產品,若為合格品,則可盈利元,若為次品,則虧損元.記為生產件甲產品和件乙產品所得的總利潤,求隨機變量的分布列和數學期望(將產品的合格率作為抽檢一件這種產品為合格品的概率)
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校名學生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學生扮演的角色有名士兵和名司令,其余角色各人,現在新加入名學生,將這名學生分成組進行游戲,則新加入的學生可以扮演的角色的種數為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,點E在AB上,AE=2EB=2,且DE⊥AB.以DE為折痕把△ADE折起,使點A到達點F的位置,且∠FEB=60°.
(1)求證:平面BFC⊥平面BCDE;
(2)若直線DF與平面BCDE所成角的正切值為,求二面角E﹣DF﹣C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知焦點在軸上的橢圓的一個頂點為,以右焦點為圓心以3為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設橢圓與直線相交于不同的兩點、.當時,求三角形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線C的極坐標方程為.以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為 (t為參數)
(1)若,求曲線C的直角坐標方程以及直線l的極坐標方程;
(2)設點,曲線C與直線 交于A、B兩點,求的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數據如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;
(2)現從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數為,寫出的分布列,并求.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com