若直線y=x+m與圓x2+y2+4x+2=0有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A、(0,4)
B、(-4,0)
C、(-2-
2
,-2+
2
)
D、(2-
2
,2+
2
)
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:直線y=x+m與圓x2+y2+4x+2=0有兩個(gè)不同的公共點(diǎn)?d<r,d為圓心到直線的距離.
解答: 解:由圓x2+y2+4x+2=0,化為(x+2)2+y2=2,得到圓心C(-2,0),半徑r=
2

圓心C到直線y=x+m的距離d=
|-2+0+m|
2
=
|m-2|
2

∵直線y=x+m與圓x2+y2+4x+2=0有兩個(gè)不同的公共點(diǎn),
∴d<r,
|m-2|
2
2
,化為|m-2|<2,解得0<m<4.
故選:A.
點(diǎn)評:本題考查了直線與圓相交得到充要條件、點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從學(xué)校參加數(shù)學(xué)競賽的學(xué)生的試卷中抽取一個(gè)樣本,考察競賽的成績分布,將樣本分成5組,繪制頻率分布直方圖如圖,從左至右各小組的小長方形的高之比為1:3:6:4:2,最右邊一組的頻數(shù)是6,請結(jié)合直方圖提供的信息,解答下列問題:
(1)樣本的容量是多少?
(2)列出頻率分布表;
(3)成績落在哪個(gè)范圍的人數(shù)最多?并求出該小組的頻數(shù)、頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
n→∞
n2+1
2n2-n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A、B為互斥事件,給出下列結(jié)論
①P(A)+P(B)<1;
②P(A)+P(B)=1;
③P(A)+P(B)≤1;
④P(A•B)=0,
則正確結(jié)論個(gè)數(shù)為(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(-x)=f(x)和f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=1-x,則關(guān)于x的方程f(x)=(
1
3
x在x∈[0,4]上解的個(gè)數(shù)是( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)空氣質(zhì)量指數(shù)AQI(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:
AQI(數(shù)值) 0~50 51~100 101~150 151~200 201~300 >300
空氣質(zhì)量級別 一級 二級 三級 四級 五級 六級
空氣質(zhì)量類別 優(yōu) 輕度污染 中度污染 重度污染 嚴(yán)重污染
空氣質(zhì)量類別顏色 綠色 黃色 橙色 紅色 紫色 褐紅色
某市2013年10月1日-10月30日,對空氣質(zhì)量指數(shù)AQI進(jìn)行監(jiān)測,獲得數(shù)據(jù)后得到如圖的條形圖:
(1)估計(jì)該城市本月(按30天計(jì))空氣質(zhì)量類別為中度污染的概率;
(2)在空氣質(zhì)量類別顏色為紫色和褐紅色的數(shù)據(jù)中任取2個(gè),求至少有一個(gè)數(shù)據(jù)反映的空氣質(zhì)量類別顏色為褐紅色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

an為(1+x)n+1的展開式中含xn-1項(xiàng)的系數(shù),則
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
logax       (x≥1)
(3-a)x-1     (x<1)
 是定義在R上x1≠x2,恒有
f(x1)-f(x2)
x1-x2
>0
的函數(shù),求a的取值范圍是(  )
A、[2,3)
B、(1,3)
C、(1,+∞)
D、(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)多面體的三視圖分別為正方形、等腰三角形和矩形,如圖所示.則該多面體的體積為
 

查看答案和解析>>

同步練習(xí)冊答案