數(shù)列{an}的前n項(xiàng)和Sn=an2+bn,且a1=1,a2=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)利用遞推關(guān)系可知a=1,b=0,于是可求得數(shù)列{an}的通項(xiàng)公式;
(2)利用裂項(xiàng)法可知bn=
1
2
1
2n-1
-
1
2n+1
),從而可求得數(shù)列{bn}的前n項(xiàng)和Tn
解答: 解:(1)由Sn=an2+bn,且a1=1,a2=3,
可得a=1,b=0,…(3分)
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1;
當(dāng)n=1時(shí),S1=a1=1;
∴an=2n-1.…(7分)
(2)∵bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
)…(10分)
∴Tn=b1+b2+b3+…+bn
=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
n
2n+1
.…(14分)
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查遞推關(guān)系求通項(xiàng)與裂項(xiàng)法求和,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A、
3
B、
3
2
C、-
3
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=
1
2
AB.Q是PC上的一點(diǎn),且PA∥平面QBD.
(1)確定Q的位置;
(2)求二面角Q-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率是
3
2

(1)若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
(2)若存在過(guò)點(diǎn)A(1,0)的直線l,使點(diǎn)C(2,0)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,點(diǎn)O是A1C1的中點(diǎn),AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)求證:AB1⊥AlC;
(2)求A1C1與平面AA1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD.若PA=AB=BC=
1
2
AD.
(Ⅰ)求證:CD⊥PC;
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班有班干部6人,其中有女同學(xué)4人,所有班干部中只有男同學(xué)甲和女同學(xué)乙參加過(guò)社區(qū)服務(wù),今抽調(diào)3名班干部組成青年志愿者活動(dòng)小組到社區(qū)服務(wù),小組中必須有男有女,且甲、乙兩人至少有一人參加,那么不同的選派方法共有
 
 種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A′B′C′D′的長(zhǎng)寬高分別為a,b,c,(a>b>c),一只螞蟻沿一個(gè)長(zhǎng)方體ABCD-A′B′C′D′的表面爬行從A到C′的最短距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=
1
2
x2+bx+c
與x軸交于A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)E是線段AB上的動(dòng)點(diǎn),作EF∥AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時(shí),求E點(diǎn)的坐標(biāo);
(3)若P為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過(guò)P作y軸的平行線,交AC于Q,當(dāng)P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段PQ的值最大,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案