精英家教網 > 高中數學 > 題目詳情
設兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=(  )
A.4B.4C.8D.8
C

試題分析:設圓的方程分別為,將點(4,1)代入可知,兩式分別解得
,那么兩圓心的距離為|C1C2|=,故選C
點評:設出圓的方程,利用過公共點(4,1),且都與坐標軸相切說明了都在第一象限,求出圓心的坐標即可得到結論。屬于中檔題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

若直線始終平分圓的周長,則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知圓和直線,直線都經過圓C外定點A(1,0).
(Ⅰ)若直線與圓C相切,求直線的方程;
(Ⅱ)若直線與圓C相交于P,Q兩點,與交于N點,且線段PQ的中點為M,
求證:為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過點可作圓的兩條切線,則實數的取值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在的直線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題13分)
已知平面直角坐標系內三點
(1) 求過三點的圓的方程,并指出圓心坐標與圓的半徑.
(2)求過點與條件 (1) 的圓相切的直線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分10分)
已知圓O:,圓C:,由兩圓外一點引兩圓切線PA、PB,切點分別為A、B,滿足|PA|=|PB|.

(Ⅰ)求實數a、b間滿足的等量關系;
(Ⅱ)求切線長|PA|的最小值;
(Ⅲ)是否存在以P為圓心的圓,使它與圓O相內切并且與圓C相外切?若存在,求出圓P的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓方程為
(1)求圓心軌跡的參數方程C;
(2)點是(1)中曲線C上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

關于直線2x-y+3=0對稱的圓的方程是         ___ .

查看答案和解析>>

同步練習冊答案