【題目】已知拋物線:經(jīng)過(guò)點(diǎn).
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)設(shè)為原點(diǎn),過(guò)拋物線的焦點(diǎn)作斜率不為0的直線交拋物線于兩點(diǎn),,直線分別交直線,于點(diǎn)和點(diǎn).求證:以為直徑的圓經(jīng)過(guò)軸上的兩個(gè)定點(diǎn).
【答案】(1)拋物線的方程為,準(zhǔn)線方程為 (2)證明見解析
【解析】
(1)將點(diǎn)代入拋物線即可求出答案.
(2)根據(jù)題意設(shè)出直線:、、,聯(lián)立直線與拋物線,即可得出.即可求出點(diǎn)、,要證以為直徑的圓經(jīng)過(guò)軸上的兩個(gè)定點(diǎn).則只需證明在軸上存在兩點(diǎn)使.
解:(Ⅰ)由拋物線:經(jīng)過(guò)點(diǎn),得.
所以拋物線的方程為,其準(zhǔn)線方程為.
(Ⅱ)拋物線的焦點(diǎn)為,設(shè)直線的方程為.
由,得.
設(shè),,則.
直線的方程為,令,得點(diǎn)的橫坐標(biāo)為.
同理可得點(diǎn)的橫坐標(biāo).
設(shè)點(diǎn),則.
.
令,即,得或.
綜上,以為直徑的圓經(jīng)過(guò)軸上的定點(diǎn)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓長(zhǎng)軸的兩個(gè)端點(diǎn)分別為,, 離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)作一條垂直于軸的直線,使之與橢圓在第一象限相交于點(diǎn),在第四象限相交于點(diǎn),若直線與直線相交于點(diǎn),且直線的斜率大于,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列與正項(xiàng)數(shù)列的前項(xiàng)和分別為和,且對(duì)任意,恒成立.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,若,求;
(3)若對(duì)任意,恒有及成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將4名大學(xué)生隨機(jī)安排到A,B,C,D四個(gè)公司實(shí)習(xí).
(1)求4名大學(xué)生恰好在四個(gè)不同公司的概率;
(2)隨機(jī)變量X表示分到B公司的學(xué)生的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求;
(3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,,記.
(1)求b1,b2的值;
(2)證明:數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果不是等差數(shù)列,但若,使得,那么稱為“局部等差”數(shù)列.已知數(shù)列的項(xiàng)數(shù)為4,記事件:集合,事件:為“局部等差”數(shù)列,則條件概率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn),且.
(Ⅰ)若點(diǎn)的坐標(biāo)為,求的值;
(Ⅱ)若點(diǎn)為線性約束條件所圍成的平面區(qū)域上的一個(gè)動(dòng)點(diǎn),試確定角的取值范圍,并求函數(shù)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距,汽車從甲地勻速行駛到乙地,速度不超過(guò).已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(單位:)的平方成正比,且比例系數(shù)為,固定部分為元.
(1)把全程運(yùn)輸成本(元)表示為速度的函數(shù),并求出當(dāng),時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最。
(2)隨著汽車的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng),元,此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com