【題目】已知函數(shù)f(x)=|x-1|.

(Ⅰ)解不等式f(x)+f(x+4)≥8;

(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f().

【答案】(Ⅰ){x|x≤-5,或x≥3}(Ⅱ)見(jiàn)解析

【解析】試題分析:(Ⅰ)易求,利用一次函數(shù)的單調(diào)性可求 的解集;
(Ⅱ) 作差證明即可.

試題解析:()f(x)f(x4)|x1||x3|,

當(dāng)x<-3時(shí),由-2x-2≥8,解得x≤-5;

當(dāng)-3≤x≤1時(shí),f(x)≤8不成立;

當(dāng)x>1時(shí),由2x+2≥8,解得x≥3.

所以不等式的解集為{x|x≤-5,或x≥3}.

(Ⅱ)f(ab)>|a|f()即|ab-1|>|a-b|.

因?yàn)閨a|<1,|b|<1,

所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,

所以|ab-1|>|a-b|.

故所證不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市擬招商引資興建一化工園區(qū),新聞媒體對(duì)此進(jìn)行了問(wèn)卷調(diào)查,在所有參與調(diào)查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如表所示:

支持

保留

不支持

30歲以下

900

120

280

30歲以上(含30歲)

300

260

140

(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取部分市民做進(jìn)一步調(diào)研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在30歲以上的人有多少人被抽。

(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進(jìn)一步的調(diào)研,將此6人看作一個(gè)總體,在這6人中任意選取2人,求至少有1人在30歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),試判斷函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題共12分)

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,ADC=90°,平面PAD底面ABCD,QAD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=

1)求證:平面PQB平面PAD;

2)若二面角M-BQ-C30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn).

(Ⅰ)求證:PC∥平面EBD;

(Ⅱ)求證:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地棚戶(hù)區(qū)改造建筑用地平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形ABCD是原棚戶(hù)區(qū)建筑用地,測(cè)量可知邊界ABAD=4萬(wàn)米,BC=6萬(wàn)米,CD=2萬(wàn)米.

(1)請(qǐng)計(jì)算原棚戶(hù)區(qū)建筑用地ABCD的面積及AC的長(zhǎng);

(2)因地理?xiàng)l件的限制,邊界AD,DC不能變更,而邊界AB,BC可以調(diào)整,為了提高棚戶(hù)區(qū)建筑用地的利用率,請(qǐng)?jiān)?/span>上設(shè)計(jì)一點(diǎn)P,使得棚戶(hù)區(qū)改造后的新建筑用地APCD的面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著國(guó)家二孩政策的全面放開(kāi),為了調(diào)查一線(xiàn)城市和非一線(xiàn)城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.

非一線(xiàn)

一線(xiàn)

總計(jì)

愿生

45

20

65

不愿生

13

22

35

總計(jì)

58

42

100

K2,得K2.

參照下表,

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

正確的結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為生育意愿與城市級(jí)別有關(guān)

B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為生育意愿與城市級(jí)別無(wú)關(guān)

C. 99%以上的把握認(rèn)為生育意愿與城市級(jí)別有關(guān)

D. 99%以上的把握認(rèn)為生育意愿與城市級(jí)別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB4AD2,EDC邊上,且DE1,將△ADE沿AE折到△ADE的位置,使得平面ADE⊥平面ABCE.

(1)求證:AEBD;

(2)求三棱錐ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2018屆江蘇省泰州中學(xué)高三12月月考】已知橢圓的中心為坐標(biāo)原點(diǎn),橢圓短軸長(zhǎng)為,動(dòng)點(diǎn))在橢圓的準(zhǔn)線(xiàn)上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求以為直徑且被直線(xiàn)截得的弦長(zhǎng)為的圓的方程;

(3)設(shè)是橢圓的右焦點(diǎn),過(guò)點(diǎn)的垂線(xiàn)與以為直徑的圓交于點(diǎn),求證:線(xiàn)段的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案