【題目】某市擬招商引資興建一化工園區(qū),新聞媒體對(duì)此進(jìn)行了問卷調(diào)查,在所有參與調(diào)查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如表所示:
支持 | 保留 | 不支持 | |
30歲以下 | 900 | 120 | 280 |
30歲以上(含30歲) | 300 | 260 | 140 |
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取部分市民做進(jìn)一步調(diào)研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在30歲以上的人有多少人被抽;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進(jìn)一步的調(diào)研,將此6人看作一個(gè)總體,在這6人中任意選取2人,求至少有1人在30歲以上的概率.
【答案】(I);(II).
【解析】試題分析:(I)運(yùn)用分層抽樣的知識(shí)建立方程求解;(II)依據(jù)題設(shè)借助列舉法運(yùn)用古典概型的計(jì)算公式求解:
試題解析:
解:(Ⅰ)設(shè)在“支持”的群體中抽取個(gè)人,其中年齡在歲以下的人被抽取人.
由題意,得.則人.
所以在“支持”的群體中,年齡在歲以下的人有人被抽取.
(Ⅱ)設(shè)所選的人中,有人年齡在歲以下.則,∴.
即從歲以下抽取人,另一部分抽取人.分別記作.
則從中任取人的所有基本事件為
.共15個(gè)
其中至少有人在歲以上的基本事件有個(gè).
分別是.
所以在這6人中任意選取人,至少有人在歲以上的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長(zhǎng)方體中, 為的中點(diǎn),如圖所示.
(1) 證明: 平面;
(2) 求平面與平面所成銳二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·無錫模擬)已知函數(shù)f(x)滿足,當(dāng)x∈[0,1]時(shí),f(x)=x.若g(x)=f(x)-mx-2m在區(qū)間(-1,1]上有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·日照一模)如圖所示,ABCD-A1B1C1D1是長(zhǎng)方體,O是B1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,給出下列結(jié)論:
①A、M、O三點(diǎn)共線;②A、M、O、A1不共面;③A、M、C、O共面;④B、B1、O、M共面.
其中正確結(jié)論的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),討論函數(shù)與圖像的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,如果x∈D,y∈D,使得f(x)=-f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個(gè)函數(shù):①y=sin x;②y=2x;③y=;④f(x)=ln x.則其中“Ω函數(shù)”共有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)f(x)=xln x-x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若x>0,f(x)+ax2≤0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正項(xiàng)等差數(shù)列{an}滿足a1=4,且a2,a4+2,2a7-8成等比數(shù)列,{an}的前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f().
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com