【題目】已知函數(shù) ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<﹣1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時,不等式 恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:由f(1)=1,f(﹣2)=4.

解得:


(2)解:由(1) ,

所以 ,

令x+1=t,t<0,

=

因為x<﹣1,所以t<0,

所以,當(dāng)

所以 ,

即AP的最小值是 ,此時 ,

點(diǎn)P的坐標(biāo)是


(3)解:問題即為 對x∈[1,2]恒成立,

也就是 對x∈[1,2]恒成立,

要使問題有意義,0<m<1或m>2.

法一:在0<m<1或m>2下,問題化為 對x∈[1,2]恒成立,

對x∈[1,2]恒成立,mx﹣m≤x2≤mx+m對x∈[1,2]恒成立,

①當(dāng)x=1時, 或m>2,

②當(dāng)x≠1時, 對x∈(1,2]恒成立,

對于 對x∈(1,2]恒成立,等價于

令t=x+1,x∈(1,2],則x=t﹣1,t∈(2,3], ,t∈(2,3]遞增,

, ,結(jié)合0<m<1或m>2,

∴m>2

對于 對x∈(1,2]恒成立,等價于

令t=x﹣1,x∈(1,2],則x=t+1,t∈(0,1],

,t∈(0,1]遞減,

,

∴m≤4,

∴0<m<1或2<m≤4,

綜上:2<m≤4(16分)

法二:問題即為 對x∈[1,2]恒成立,

也就是 對x∈[1,2]恒成立,

要使問題有意義,0<m<1或m>2.

故問題轉(zhuǎn)化為x|x﹣m|≤m對x∈[1,2]恒成立,

令g(x)=x|x﹣m|

①若0<m<1時,由于x∈[1,2],故g(x)=x(x﹣m)=x2﹣mx,g(x)在x∈[1,2]時單調(diào)遞增,

依題意g(2)≤m, ,舍去;

②若m>2,由于x∈[1,2],故

考慮到 ,再分兩種情形:

(ⅰ) ,即2<m≤4,g(x)的最大值是 ,

依題意 ,即m≤4,

∴2<m≤4;

(ⅱ) ,即m>4,g(x)在x∈[1,2]時單調(diào)遞增,

故g(2)≤m,

∴2(m﹣2)≤m,

∴m≤4,舍去.

綜上可得,2<m≤4


【解析】(1)由f(1)=1,f(﹣2)=4,代入可方程,解方程即可求得關(guān)于a,b的解a,b;(2)由(1)可知 ,利用兩點(diǎn)間的距離個公式代入 ,結(jié)合x的范圍可求x+1=t<0,然后結(jié)合基本不等式式即可求解(3)問題即為 對x∈[1,2]恒成立,即 對x∈[1,2]恒成立,則0<m<1或m>2.法一:問題化為 對x∈[1,2]恒成立,mx﹣m≤x2≤mx+m對x∈[1,2]恒成立,從而可轉(zhuǎn)化為求解函數(shù)的最值,利用函數(shù)的單調(diào)性即可求解法二:問題即為 對x∈[1,2]恒成立,即 對x∈[1,2]恒成立,0<m<1或m>2.問題轉(zhuǎn)化為x|x﹣m|≤m對x∈[1,2]恒成立,令g(x)=x|x﹣m|,結(jié)合函數(shù)的性質(zhì)可求

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的首項a1= ,公比q滿足q>0且q≠1,又已知a1 , 5a3 , 9a5成等差數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)令bn=log3 ,記Tn= ,是否存在最大的整數(shù)m,使得對任意n∈N* , 均有Tn 成立?若存在,求出m,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)

(1)若處取得極小值為,求的值;

(2)對于任意給定的正實數(shù)、,證明:存在實數(shù),當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為1的兩個全等的等腰直角三角形,則該幾何體的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣1)2=2經(jīng)過橢圓Γ: + =1(a>b>0)的右焦點(diǎn)F和上頂點(diǎn)B.
(1)求橢圓Γ的方程;
(2)過原點(diǎn)O的射線l與橢圓Γ在第一象限的交點(diǎn)為Q,與圓C的交點(diǎn)為P,M為OP的中點(diǎn),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)利用“五點(diǎn)法”畫出函數(shù) 在長度為一個周期的閉區(qū)間的簡圖.

(2)并說明該函數(shù)圖像可由y=sinx(x∈R)的圖像經(jīng)過怎樣平移和伸縮變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,b=
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)F1 , F2分別為橢圓的左、右焦點(diǎn),A、B為橢圓的左、右頂點(diǎn),P為橢圓C上的點(diǎn),求證:以PF2為直徑的圓與以AB為直徑的圓相切;
(3)過左焦點(diǎn)F1作互相垂直的弦MN與GH,判斷MN的中點(diǎn)與GH的中點(diǎn)所在直線l是否過x軸上的定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子裝有六張卡片,上面分別寫著如下六個函數(shù):

.

)從中任意拿取張卡片,中至少有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;

)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a1=﹣3,11a5=5a8 , 前n項和為Sn
(1)求an;
(2)當(dāng)n為何值時,Sn最。坎⑶骃n的最小值.

查看答案和解析>>

同步練習(xí)冊答案