【題目】已知正四棱錐的所有頂點都在球的球面上,該四棱錐的五個面所在的平面截球面所得的圓大小相同,若正四棱錐的高為2,則球的表面積為( )
A.B.C.D.
【答案】A
【解析】
根據(jù)四棱錐的五個面所在的平面截球面所得的圓大小相同,考慮將底面ABCD和一個側(cè)面PAB放入同一個圓中,來計算相應(yīng)的邊長,再根據(jù)球的性質(zhì)計算半徑即可得球表面積.
如圖所示,圓是正方形ABCD和等腰△PAB的外接圓,設(shè)圓的半徑為r,
則,
所以
所以
設(shè)點O是四棱錐P - ABCD的外接球的球心,F為正方形ABCD的中心,如圖,
則PF平面ABCD,
所以在AFP中有
又因為AF的長度為圓的半徑,
所以
所以
設(shè)四棱錐P - ABCD的外接球的半徑為R,
在中,,
所以,
因為,
所以
所以
解得
所以四棱錐P - ABCD的外接球的表面積為,
故選:A
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,傾斜角為銳角的直線l過點與單位圓相切.
(1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在棱長為1的正方體中,,,分別是線段,,的中點,又,分別在線段,上,且.設(shè)平面平面,現(xiàn)有下列結(jié)論:
①平面;
②;
③直線與平面不垂直;
④當(dāng)變化時,不是定直線.
其中不成立的結(jié)論是______.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標(biāo)準如下:4小時內(nèi)(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(nèi)(含24小時)收費30元;超過24小時,按前述標(biāo)準重新計費.上述標(biāo)準不足一小時的按一小時計費.為了調(diào)查該停車場一天的收費情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:
(小時) | ||||||
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調(diào)研,記錄并統(tǒng)計了停車時長與司機性別的列聯(lián)表:
男 | 女 | 合計 | |
不超過6小時 | 30 | ||
6小時以上 | 20 | ||
合計 | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認為“停車是否超過6小時”與性別有關(guān)?
(2)(i)表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費用,求的概率分布列及期望;
(ii)現(xiàn)隨機抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費用大于的車輛數(shù),求的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種昆蟲的日產(chǎn)卵數(shù)和時間變化有關(guān),現(xiàn)收集了該昆蟲第1天到第5天的日產(chǎn)卵數(shù)據(jù):
第x天 | 1 | 2 | 3 | 4 | 5 |
日產(chǎn)卵數(shù)y(個) | 6 | 12 | 25 | 49 | 95 |
對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.
15 | 55 | 15.94 | 54.75 |
(1)根據(jù)散點圖,利用計算機模擬出該種昆蟲日產(chǎn)卵數(shù)y關(guān)于x的回歸方程為(其中e為自然對數(shù)的底數(shù)),求實數(shù)a,b的值(精確到0.1);
(2)根據(jù)某項指標(biāo)測定,若日產(chǎn)卵數(shù)在區(qū)間(e6,e8)上的時段為優(yōu)質(zhì)產(chǎn)卵期,利用(1)的結(jié)論,估計在第6天到第10天中任取兩天,其中恰有1天為優(yōu)質(zhì)產(chǎn)卵期的概率.
附:對于一組數(shù)據(jù)(v1,μ1),(v2,μ2),…,(vn,μn),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 平面, , , , , , 是的中點, 在線段上,且滿足.
(1)求證: 平面;
(2)求二面角的余弦值;
(3)在線段上是否存在點,使得與平面所成角的余弦值是,若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(如圖所示),且點在直線的左上方.
(1)求橢圓的方程;
(2)若,求的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,若橢圓的長軸長等于的直徑,且,成等差數(shù)列
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)、是橢圓上不同的兩點,線段的垂直平分線交軸于點,試求點的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“網(wǎng)購”已經(jīng)成為我們?nèi)粘I钪械囊徊糠郑车貐^(qū)隨機調(diào)查了100名男性和100名女性在“雙十一”活動中用于網(wǎng)購的消費金額,數(shù)據(jù)整理如下:
男性消費金額頻數(shù)分布表
消費金額 (單位:元) | 0~500 | 500~1000 | 1000~1500 | 1500~2000 | 2000~3000 |
人數(shù) | 15 | 15 | 20 | 30 | 20 |
(1)試分別計算男性、女性在此活動中的平均消費金額;
(2)如果分別把男性、女性消費金額與中位數(shù)相差不超過200元的消費稱作理性消費,試問是否有5成以上的把握認為理性消費與性別有關(guān).
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com