【題目】已知R上的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=x2+x﹣1,則f[f(﹣1)]=(
A.﹣1
B.1
C.2
D.﹣2

【答案】A
【解析】解:根據(jù)條件, f[f(﹣1)]=f[﹣f(1)]
=﹣f[f(1)]
=﹣f(1)
=﹣1.
故選A.
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A={x|3-3x>0},則有(  )

A. 3∈A B. 1∈A

C. 0∈A D. -1A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果a,b,c滿足c<b<a且ac<0,那么下列選項(xiàng)中不一定成立的是(
A.ab>ac
B.c(b﹣a)>0
C.cb2<ab2
D.ac(a﹣c)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng).有人走訪了四位歌手,甲說(shuō):是乙或丙獲獎(jiǎng),乙說(shuō):甲、丙都未獲獎(jiǎng),丙說(shuō):我獲獎(jiǎng)了,丁說(shuō):是乙獲獎(jiǎng)了”.四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】復(fù)數(shù)z=i(i+1)(i為虛數(shù)單位)的共軛復(fù)數(shù)是(  )

A. -1-i B. -1+i C. 1-i D. 1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是( )

A. 至少有一個(gè)白球;紅、黑球各一個(gè)

B. 至少有一個(gè)白球;至少有一個(gè)紅球

C. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球

D. 至少有一個(gè)白球;都是白球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,則能得出a⊥b的是( )

A.a(chǎn)⊥α,b∥β,α⊥β B.a(chǎn)⊥α,b⊥β,α∥β

C.a(chǎn)α,b⊥β,α∥β D.a(chǎn)α,b∥β,α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面α∥β,且α與β的距離為d(d>0),mα,則在β內(nèi)與直線m的距離為2d的直線共有( )

A.0條 B.1條

C.2條 D.無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布N(2,σ2),且P(0≤X≤2)=0.3,則P(X>4)=

查看答案和解析>>

同步練習(xí)冊(cè)答案