【題目】如圖,矩形ABCD中,AD2AB4,EBC的中點(diǎn),現(xiàn)將△BAE與△DCE折起,使得平面BAE及平面DEC都與平面ADE垂直.

1)求證:BC∥平面ADE;

2)求二面角ABEC的余弦值.

【答案】(1)見解析;(2)

【解析】

1)過點(diǎn)BBMAEM,過點(diǎn)CCNEDN,連接MN,證明BCMN即可;
2)以E為原點(diǎn),EDx軸,EAy軸,建立空間直角坐標(biāo)系Exyz,求出平面CEB的法向量,平面AEB的法向量,計(jì)算即可.

1)過點(diǎn)BBMAE,垂足為M,過點(diǎn)CCNEDN,連接MN,如圖所示;

∵平面BAE⊥平面ADE,平面DCE⊥平面ADE,

BM⊥平面ADECNADE,
BMCN
由題意知RtABERtDCE,
BMCN,
∴四邊形BCNM是平行四邊形,
BCMN;
BC平面ADEMN平面ADE,
BC∥平面ADE
2)由已知,AE、DE互相垂直,以E為原點(diǎn),EDx軸,EAy軸,建立空間直角坐標(biāo)系Exyz,如圖所示;

E0,0,0),B0,),C,0,),

設(shè)平面CEB的法向量為=(x,y,z),
,

y1,則z1x1,
=(1,1,1);
設(shè)平面AEB的法向量為=(xy,z),

,易求得=(1,0,0),

二面角ABEC的平面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(2)若為曲線上的動(dòng)點(diǎn),求的中點(diǎn)到直線 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處切線的斜率為,求此切線方程

(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn-n=2an-2),(nN*

1)證明:數(shù)列{an-1}為等比數(shù)列.

2)若bn=anlog2an-1),數(shù)列{bn}的前項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在, , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個(gè),再?gòu)倪@5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購(gòu)方案:

A.所有蜜柚均以40元/千克收購(gòu);

B.低于2250克的蜜柚以60元/個(gè)收購(gòu),高于或等于2250克的以80元/個(gè)收購(gòu).

請(qǐng)你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某地區(qū)2009年至2018年芯片產(chǎn)業(yè)投資額 (單位:億元)的散點(diǎn)圖,為了預(yù)測(cè)該地區(qū)2019年的芯片產(chǎn)業(yè)投資額,建立了與時(shí)間變量的四個(gè)線性回歸模型.根據(jù)2009年至2018年的數(shù)據(jù)建立模型①;根據(jù)2010年至2017年的數(shù)據(jù)建立模型②;根據(jù)2011年至2016年的數(shù)據(jù)建立模型③;根據(jù)2014年至2018年的數(shù)據(jù)建立模型④.則預(yù)測(cè)值更可靠的模型是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《山東省全民健身實(shí)施計(jì)劃(2016-2020年)》,到2020年鄉(xiāng)鎮(zhèn)(街道)普遍建有“兩個(gè)一”工程,即一個(gè)全民健身活動(dòng)中心或燈光籃球場(chǎng)、一個(gè)多功能運(yùn)動(dòng)場(chǎng).某市把甲、乙、丙、丁四個(gè)多功能運(yùn)動(dòng)場(chǎng)全部免費(fèi)為市民開放.

(1)在一次全民健身活動(dòng)中,四個(gè)多功能運(yùn)動(dòng)場(chǎng)的使用場(chǎng)數(shù)如圖,用分層抽樣的方法從甲、乙、丙、丁四場(chǎng)館的使用場(chǎng)數(shù)中依次抽取,,,共25場(chǎng),在,,中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;

(2)設(shè)四個(gè)多功能運(yùn)動(dòng)場(chǎng)一個(gè)月內(nèi)各場(chǎng)使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的數(shù)據(jù):

10

15

20

25

30

35

40

2302

2708

2996

3219

3401

3555

3689

2.49

2.99

3.55

4.00

4.49

4.99

5.49

(i)用最小二乘法求之間的回歸直線方程;

(ii)叫做運(yùn)動(dòng)場(chǎng)月惠值,根據(jù)(i)的結(jié)論,試估計(jì)這四個(gè)多功能運(yùn)動(dòng)場(chǎng)月惠值最大時(shí)的值.

參考數(shù)據(jù)和公式:,,,,

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率是,長(zhǎng)軸是圓的直徑.點(diǎn)是橢圓的下頂點(diǎn),,是過點(diǎn)且互相垂直的兩條直線,與圓相交于,兩點(diǎn),交橢圓于另一點(diǎn).

1)求橢圓的方程;

2)當(dāng)的面積取最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,,,,點(diǎn)上,且,將沿折起,使得平面平面(如圖),中點(diǎn).

1)求證:平面

2)求直線與平面所成的角的正弦值.

3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案