【題目】已知數列{an}的前n項和為Sn,且滿足Sn-n=2(an-2),(n∈N*)
(1)證明:數列{an-1}為等比數列.
(2)若bn=anlog2(an-1),數列{bn}的前項和為Tn,求Tn.
【答案】(1)見解析;
(2).
【解析】
證明數列是等比數列常用的方法是作商法:當時,證=定值.
考查分組求和,其中又包含錯位相減法及等差數列求和公式法
(1)證明:∵Sn-n=2(an-2),n≥2時,Sn-1-(n-1)=2(an-1-2),
兩式相減an-1=2an-2an-1 ,∴an=2an-1,∴an-1=2(an-1-1),
∴(常數),
又n=1時,a1-1=2(a1-2)得a1=3,a1-1=2 ,
所以數列{an-1}是以2為首項,2為公比的等比數列.
(2)由(1),∴,
又bn=anlog2(an-1),∴,
∴Tn=b1+b2+b3+…+bn=(1×2+2×22+3×23+…+n×2n)+(1+2+3+…+n),
設,
,
兩式相減,
∴,又,
∴.
科目:高中數學 來源: 題型:
【題目】在多面體中,四邊形是正方形,平面平面,.
(1)求證:平面;
(2)在線段上是否存在點,使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠預購軟件服務,有如下兩種方案:
方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;
方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.
(1)設日收費為元,每天軟件服務的次數為,試寫出兩種方案中與的函數關系式;
(2)該工廠對過去100天的軟件服務的次數進行了統(tǒng)計,得到如圖所示的條形圖,依據該統(tǒng)計數據,把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,點P到兩點(0,),(0,)的距離之和為4,設點P的軌跡為C,直線y=kx+1與A交于A,B兩點.
(1)寫出C的方程;
(2)若,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓過點,且與圓關于直線對稱.
(1)求圓的方程;
(2)若、為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值;
(3)已知直線,是直線上的動點,過作圓的兩條切線、,切點為、,試探究直線是否過定點,若過定點,求出定點;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年的流感來得要比往年更猛烈一些據四川電視臺“新聞現場”播報,近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因為感冒來的醫(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數之間的關系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年1到6月每月20日的晝夜溫差情況與患感冒就診的人數,得到如下資料:
日期 | 1月20日 | 2月20日 | 3月20日 | 4月20日 | 5月20日 | 6月20日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數人 | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
若選取的是1月與6月的兩組數據,請根據2月至5月份的數據,求出y關于x的線性回歸方程;
若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式: ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 下列結論錯誤的是
A. 命題:“若,則”的逆否命題是“若,則”
B. “”是“”的充分不必要條件
C. 命題:“, ”的否定是“, ”
D. 若“”為假命題,則均為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今年入夏以來,我市天氣反復,降雨頻繁.在下圖中統(tǒng)計了上個月前15天的氣溫,以及相對去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯誤的是()
A.今年每天氣溫都比去年氣溫高B.今年的氣溫的平均值比去年低
C.去年8-11號氣溫持續(xù)上升D.今年8號氣溫最低
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com