【題目】 下列結論錯誤的是

A. 命題:“若,則”的逆否命題是“若,則

B. ”是“”的充分不必要條件

C. 命題:“ ”的否定是“,

D. 若“”為假命題,則均為假命題

【答案】B

【解析】

由逆否命題的定義考查選項A,由不等式的性質考查選項B,由全稱命題的否定考查選項C,由真值表考查選項D,據(jù)此確定所給的說法是否正確即可.

逐一考查所給命題的真假:

A. 同時否定條件和結論,然后以原來的條件為結論,以原來的結論為條件即可得到原命題的逆否命題,故命題:,則的逆否命題是,則

B. ,當時不滿足,即充分性不成立,

反之,若,則一定有,即必要性成立,

綜上可得,的必要不充分條件

C. 特稱命題的否定是全稱命題,命題:,的否定是,,

D. 由真值表可知:若為假命題,則均為假命題.

即結論錯誤的為B選項.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( )

A.先把高二年級的名學生編號:,再從編號為的學生中隨機抽取名學生,其編號為,然后抽取編號為的學生,這種抽樣方法是分層抽樣法

B.線性回歸直線不一定過樣本中心

C.若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于

D.若一組數(shù)據(jù),,,的平均數(shù)是,則該組數(shù)據(jù)的方差也是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.

(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?

(2)當時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為,橢圓的長軸長與焦距之比為,過的直線交于,兩點.

(1)當的斜率為時,求的面積;

(2)當線段的垂直平分線在軸上的截距最小時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了檢測某種零件的一條生產線的生產過程,從生產線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間()之外,則認為該零件屬“不合格”的零件,其中,分別為樣本平均數(shù)和樣本標準差,計算可得:(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;

(2)工廠利用分層抽樣的方法從樣本的前3組中抽出6個零件,標上記號,并從這6個零件中再抽取2個,求再次抽取的2個零件中恰有1個尺寸不超過的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南北朝時期杰出的數(shù)學家祖沖之的兒子祖暅在數(shù)學上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現(xiàn)有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高(

A.有最小值B.有最大值C.有最小值D.有最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),把函數(shù)的圖象向右平移個單位,再把圖象上各點的橫坐標縮小到原來的一半,縱坐標不變,得到函數(shù)的圖象,當時,方程恰有兩個不同的實根,則實數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為中心,以坐標軸為對稱軸的橢圓C經過點M(21),N(,-).

(1)求橢圓C的標準方程;

(2)經過點M作傾斜角互補的兩條直線,分別與橢圓C相交于異于M點的A,B兩點,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Ox2y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,|PQ|=|PA|成立如圖.

(1)a,b間的關系;

(2)|PQ|的最小值

查看答案和解析>>

同步練習冊答案