【題目】已知的三個(gè)頂點(diǎn),其外接圓為圓

(1)若直線過點(diǎn),且被圓截得的弦長為,求直線的方程;

(2)對(duì)于線段(包括端點(diǎn))上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),求圓的半徑的取值范圍.

【答案】123

【解析】

試題(1)借助題設(shè)條件直接求解;(2)借助題設(shè)待定直線的斜率,再運(yùn)用直線的點(diǎn)斜式方程求解;(3)借助題設(shè)建立關(guān)于的不等式,運(yùn)用分析推證的方法進(jìn)行求解.

試題解析:

1的面積為2

2)線段的垂直平分線方程為,線段的垂直平分線方程為

所以外接圓圓心,半徑,圓的方程為,

設(shè)圓心到直線的距離為,因?yàn)橹本被圓截得的弦長為2,所以.

當(dāng)直線垂直于軸時(shí),顯然符合題意,即為所求;

當(dāng)直線不垂直于軸時(shí),設(shè)直線方程為,則,解得

綜上,直線的方程為.

3)直線的方程為,設(shè),,

因?yàn)辄c(diǎn)是線段的中點(diǎn),所以,又,都在半徑為的圓上,

所以

因?yàn)樵撽P(guān)于,的方程組有解,即以為圓心,為半徑的圓與以為圓心,為半徑的圓有公共點(diǎn),所以

,所以對(duì)成立.

上的值域?yàn)?/span>,所以.

又線段與圓無公共點(diǎn),所以對(duì)成立,即.

故圓的半徑的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x1,x2.

求證:tan x1+tan x2>2tan.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處的切線方程為,求的值;

(Ⅱ)討論方程的解的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(﹣x﹣1)=f(x﹣1),當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x3 , 則關(guān)于x的方程f(x)=|cosπx|在[﹣ , ]上的所有實(shí)數(shù)解之和為(
A.﹣7
B.﹣6
C.﹣3
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,G為BD中點(diǎn),點(diǎn)R在線段BH上,且 =λ(λ>0).現(xiàn)將△AED,△CFD,△DEF分別沿DE,DF,EF折起,使點(diǎn)A,C重合于點(diǎn)B(該點(diǎn)記為P),如圖2所示.

(I)若λ=2,求證:GR⊥平面PEF;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得直線FR與平面DEF所成角的正弦值為 ?若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD= ,則直線AD與平面BCD所成角的大小是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=nan﹣2nn﹣1),首項(xiàng)=1.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)數(shù)列的前n項(xiàng)和為Mn,求證: Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題恒成立;命題方程表示雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P在橢圓上,是橢圓的兩個(gè)焦點(diǎn),,的三條邊長成等差數(shù)列,則橢圓的離心率e =___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案