【題目】已知的三個(gè)頂點(diǎn),其外接圓為圓.
(1)若直線過點(diǎn),且被圓截得的弦長為,求直線的方程;
(2)對(duì)于線段(包括端點(diǎn))上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),求圓的半徑的取值范圍.
【答案】(1)(2)或(3)
【解析】
試題(1)借助題設(shè)條件直接求解;(2)借助題設(shè)待定直線的斜率,再運(yùn)用直線的點(diǎn)斜式方程求解;(3)借助題設(shè)建立關(guān)于的不等式,運(yùn)用分析推證的方法進(jìn)行求解.
試題解析:
(1)的面積為2;
(2)線段的垂直平分線方程為,線段的垂直平分線方程為,
所以外接圓圓心,半徑,圓的方程為,
設(shè)圓心到直線的距離為,因?yàn)橹本被圓截得的弦長為2,所以.
當(dāng)直線垂直于軸時(shí),顯然符合題意,即為所求;
當(dāng)直線不垂直于軸時(shí),設(shè)直線方程為,則,解得,
綜上,直線的方程為或.
(3)直線的方程為,設(shè),,
因?yàn)辄c(diǎn)是線段的中點(diǎn),所以,又,都在半徑為的圓上,
所以即
因?yàn)樵撽P(guān)于,的方程組有解,即以為圓心,為半徑的圓與以為圓心,為半徑的圓有公共點(diǎn),所以,
又,所以對(duì)成立.
而在上的值域?yàn)?/span>,所以且.
又線段與圓無公共點(diǎn),所以對(duì)成立,即.
故圓的半徑的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在處的切線方程為,求和的值;
(Ⅱ)討論方程的解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(﹣x﹣1)=f(x﹣1),當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x3 , 則關(guān)于x的方程f(x)=|cosπx|在[﹣ , ]上的所有實(shí)數(shù)解之和為( )
A.﹣7
B.﹣6
C.﹣3
D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,G為BD中點(diǎn),點(diǎn)R在線段BH上,且 =λ(λ>0).現(xiàn)將△AED,△CFD,△DEF分別沿DE,DF,EF折起,使點(diǎn)A,C重合于點(diǎn)B(該點(diǎn)記為P),如圖2所示.
(I)若λ=2,求證:GR⊥平面PEF;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得直線FR與平面DEF所成角的正弦值為 ?若存在,求出λ的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD= ,則直線AD與平面BCD所成角的大小是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=nan﹣2n(n﹣1),首項(xiàng)=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為Mn,求證: Mn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P在橢圓上,是橢圓的兩個(gè)焦點(diǎn),,且的三條邊長成等差數(shù)列,則橢圓的離心率e =___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com