【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,G為BD中點(diǎn),點(diǎn)R在線(xiàn)段BH上,且 =λ(λ>0).現(xiàn)將△AED,△CFD,△DEF分別沿DE,DF,EF折起,使點(diǎn)A,C重合于點(diǎn)B(該點(diǎn)記為P),如圖2所示.

(I)若λ=2,求證:GR⊥平面PEF;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得直線(xiàn)FR與平面DEF所成角的正弦值為 ?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(I)證明:由題意,PE,PF,PD三條直線(xiàn)兩兩垂直,∴PD⊥平面PEF, 圖1中,EF∥AC,∴GB=2GH,
∵G為BD中點(diǎn),∴DG=2GH.
圖2中,∵ =2,∴△PDH中,GR∥PD,
∴GR⊥平面PEF;
(Ⅱ)解:由題意,建立如圖所示的坐標(biāo)系,設(shè)PD=4,則P(0,0,0),F(xiàn)(2,0,0),E(0,2,0),D(0,0,4),∴H(1,1,0),
=λ,∴R( , ,0),
=( ,﹣ ,0),
=(2,﹣2,0), =(0,2,﹣4),
設(shè)平面DEF的一個(gè)法向量為 =(x,y,z),則 ,取 =(2,2,1),
∵直線(xiàn)FR與平面DEF所成角的正弦值為
= ,
∴λ= ,
∴存在正實(shí)數(shù)λ= ,使得直線(xiàn)FR與平面DEF所成角的正弦值為

【解析】(I)若λ=2,證明PD⊥平面PEF,GR∥PD,即可證明:GR⊥平面PEF;(Ⅱ)建立如圖所示的坐標(biāo)系,求出平面DEF的一個(gè)法向量,利用直線(xiàn)FR與平面DEF所成角的正弦值為 ,建立方程,即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了空間角的異面直線(xiàn)所成的角的相關(guān)知識(shí)點(diǎn),需要掌握已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為 (φ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線(xiàn)l的方程為ρcos(θ﹣ )=2
(Ⅰ)求曲線(xiàn)C在極坐標(biāo)系中的方程;
(Ⅱ)求直線(xiàn)l被曲線(xiàn)C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,設(shè)內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且sin(A﹣ )﹣cos(A+ )=
(1)求角A的大;
(2)若a= ,sin2B+cos2C=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如下圖).由圖中數(shù)據(jù)可知a=________,估計(jì)該小學(xué)學(xué)生身高的中位數(shù)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,AC= ,BC= ,△ABC的面積為 ,若線(xiàn)段BA的延長(zhǎng)線(xiàn)上存在點(diǎn)D,使∠BDC= ,則CD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三個(gè)頂點(diǎn),其外接圓為圓

(1)若直線(xiàn)過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線(xiàn)的方程;

(2)對(duì)于線(xiàn)段(包括端點(diǎn))上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線(xiàn)段的中點(diǎn),求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)求sinAcosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(I)求函數(shù)的單調(diào)區(qū)間;

,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】非零向量 的夾角為 ,且滿(mǎn)足| |=λ| |(λ>0),向量組 , 由一個(gè) 和兩個(gè) 排列而成,向量組 , 由兩個(gè) 和一個(gè) 排列而成,若 + + 所有可能值中的最小值為4 2 , 則λ=

查看答案和解析>>

同步練習(xí)冊(cè)答案