某貨輪在A處看燈塔B在貨輪的北偏東的方向上,距離為海里,在A處看燈塔C在貨輪的北偏西的方向上,距離為海里,貨輪由A處向正北航行到D處時,再看燈塔B在南偏東方向上,求:
(1)AD的距離;
(2)CD的距離。
(1)24海里;(2)8√3海里。
解析試題分析:(Ⅰ)利用已知條件,利用正弦定理求得AD的長.(Ⅱ)在△ADC中由余弦定理可求得CD,答案可得。解:(Ⅰ)在△ABD中,由已知得∠ADB=60°,B=45°
由正弦定理得AD=
(Ⅱ)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD•ACcos30°,解得CD=8 .所以A處與D處之間的距離為24nmile,燈塔C與D處之間的距離為8nmile.
考點:解三角形
點評:本題主要考查了解三角形的實際應(yīng)用.解題的關(guān)鍵是根據(jù)題意建立適當?shù)娜呛瘮?shù)模型,利用正弦定理,余弦定理等常用公式來求解.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com