【題目】如圖,半徑為的水輪繞著圓心逆時(shí)針做勻速圓周運(yùn)動(dòng),每分鐘轉(zhuǎn)動(dòng)圈,水輪圓心距離水面,如果當(dāng)水輪上點(diǎn)從離開(kāi)水面的時(shí)刻()開(kāi)始計(jì)算時(shí)間.
(1)試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求點(diǎn)距離水面的高度()與時(shí)間()滿足的函數(shù)關(guān)系;
(2)求點(diǎn)第一次到達(dá)最高點(diǎn)需要的時(shí)間.
【答案】(1);(2).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用三角函數(shù)的定義求解;(2)借助題設(shè)條件運(yùn)用實(shí)際意義建立方程求解.
試題解析:
(1)建立如圖所示的直角坐標(biāo)系.
由于水輪繞著圓心O做勻速圓周運(yùn)動(dòng),可設(shè)點(diǎn)P到水面的距離y(m)與時(shí)間t(s)滿足函數(shù)關(guān)系
水輪每分鐘旋轉(zhuǎn)4圈,
. . 水輪半徑為4 m,.………………4分
.
當(dāng)時(shí),... …………………6分
(2)由于最高點(diǎn)距離水面的距離為6,..
. .
. …………………10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn).
(1)為坐標(biāo)原點(diǎn),求證:;
(2)設(shè)點(diǎn)在線段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,求四邊形面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在上的最值;
(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,E、F、G、H分別是的中點(diǎn).
(1)證明:平面
(2)證明:平面平面.
(3)求直線AE與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年開(kāi)始,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含女生45人,求的值及抽取到的男生人數(shù);
(2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
(3)在抽取的選擇“地理”的學(xué)生中按分層抽樣再抽取6名,再?gòu)倪@6名學(xué)生中抽取2人了解學(xué)生對(duì)“地理”的選課意向情況,求2人中至少有1名男生的概率.
0.05 | 0.01 | |
3.841 | 6.635 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x+c,若不等式f(x)<0的解集是{x|-4<x<2}.
(1)求f(x)的解析式;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義證明;
(3)若函數(shù)f(x)在區(qū)間[m,m+2]上的最小值為-5,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的離心率為,短軸長(zhǎng)是2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的下頂點(diǎn)為D,過(guò)點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),是函數(shù)(,)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過(guò)點(diǎn),若時(shí),的最小值為.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com