【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含女生45人,求的值及抽取到的男生人數(shù);

(2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

(3)在抽取的選擇“地理”的學(xué)生中按分層抽樣再抽取6名,再從這6名學(xué)生中抽取2人了解學(xué)生對(duì)“地理”的選課意向情況,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

參考公式:.

【答案】(1),男生55人;(2)見解析;(3)

【解析】

(1)利用頻率與頻數(shù)和樣本容量的關(guān)系求出n和男生的人數(shù);

(2)求出列聯(lián)表,計(jì)算觀測值,對(duì)照臨界值得出結(jié)論;

(3)由分層抽樣得到6名學(xué)生中男、女人數(shù),用列舉法求出基本事件數(shù),計(jì)算所求的概率值.

(1)由題意得:,解得,男生人數(shù)為:550×=55人.

(2)列聯(lián)表為:

選擇“物理”

選擇“地理”

總計(jì)

男生

45

10

55

女生

25

20

45

總計(jì)

70

30

100

,

所以有 99%的把握認(rèn)為選擇科目與性別有關(guān).

(3)從30個(gè)選擇地理的學(xué)生中分層抽樣抽6名,

所以這6名學(xué)生中有2名男生,4名女生,

男生編號(hào)為1,2,女生編號(hào)為a,b,c,d,6名學(xué)生中再選抽2個(gè),

則所有可能的結(jié)果為Ω={ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12},

至少一名男生的結(jié)果為{a1,a2,b1,b2,c1,c2,d1,d2,12},

所以2人中至少一名男生的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知,).

(1)求證:數(shù)列為等比數(shù)列;

(2)若數(shù)列滿足:,

求數(shù)列的通項(xiàng)公式;

是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河北保定市上學(xué)期期末調(diào)研已知點(diǎn)到點(diǎn)的距離比到軸的距離大1

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線 ,交軌跡、兩點(diǎn), 為坐標(biāo)原點(diǎn),試在軌跡部分上求一點(diǎn),使得的面積最大,并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校社團(tuán)活動(dòng)開展有聲有色,極大地推動(dòng)了學(xué)生的全面發(fā)展,深受學(xué)生歡迎,每屆高一新生都踴躍報(bào)名加入.現(xiàn)已知高一某班60名同學(xué)中有4名男同學(xué)和2名女同學(xué)參加心理社,在這6名同學(xué)中,2名同學(xué)初中畢業(yè)于同一所學(xué)校,其余4名同學(xué)初中畢業(yè)于其他4所不同的學(xué)校.現(xiàn)從這6名同學(xué)中隨機(jī)選取2名同學(xué)代表社團(tuán)參加校際交流(每名同學(xué)被選到的可能性相同).

(Ⅰ)在該班隨機(jī)選取1名同學(xué),求該同學(xué)參加心理社團(tuán)的概率;

(Ⅱ)求從6名同學(xué)中選出的2名同學(xué)代表至少有1名女同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,分別是的中點(diǎn).

(1)證明:平面平面

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a11anan1n2n≥2nN*.

1)求數(shù)列{an}的通項(xiàng)公式:

2)若對(duì)任意的nN*,不等式1≤man≤5恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng),函數(shù)在區(qū)間上為增函數(shù),求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是離心率為的橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上異于其左、右頂點(diǎn)的任意一點(diǎn),過右焦點(diǎn)的外角平分線的垂線,交于點(diǎn),且為坐標(biāo)原點(diǎn)).

(1)求橢圓的方程;

(2)若點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于、兩點(diǎn),問:的周長是否為定值?如果是,求出該定值;如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案