【題目】某校社團活動開展有聲有色,極大地推動了學生的全面發(fā)展,深受學生歡迎,每屆高一新生都踴躍報名加入.現(xiàn)已知高一某班60名同學中有4名男同學和2名女同學參加心理社,在這6名同學中,2名同學初中畢業(yè)于同一所學校,其余4名同學初中畢業(yè)于其他4所不同的學校.現(xiàn)從這6名同學中隨機選取2名同學代表社團參加校際交流(每名同學被選到的可能性相同).

(Ⅰ)在該班隨機選取1名同學,求該同學參加心理社團的概率;

(Ⅱ)求從6名同學中選出的2名同學代表至少有1名女同學的概率.

【答案】(1);(2)

【解析】

根據(jù)古典概型概率計算方法,易得參加心理社同學個概率。

列出6個學生選出2名同學代表的所有情況,根據(jù)古典概率計算,即可得到至少有1名女同學的概率。

Ⅰ)依題意,該班60名同學中共有6名同學參加心理社,

所以在該班隨機選取1名同學,該同學參加心理社的概率為.

Ⅱ)設表示參加心理社的男同學,表示參加心理社的女同學,

則從6名同學中選出的2名同學代表共有15種等可能的結果:

,

其中至少有1名女同學的結果有9種:,

根據(jù)古典概率計算公式,從6名同學中選出的2名同學代表至少有1名女同學的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為.

(Ⅰ)求曲線的直角坐標方程與直線的參數(shù)方程;

(Ⅱ)設直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,橢圓C離心率為,其短軸長為2.

(1)求橢圓C的標準方程;

(2)如圖,A為橢圓C的左頂點,PQ為橢圓C上兩動點,直線POAQE,直線QOAPD,直線OP與直線OQ的斜率分別為,且,為非零實數(shù)),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的方程

1)若方程有兩個正根,求:m的取值范圍;

2)若方程有兩個正根,且一個比2大,一個比2小,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸,的中點為,過且垂直于線段的直線交射線于點.

(I)求點的橫坐標;

(II)當最大時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學生進行調查.

(1)已知抽取的名學生中含女生45人,求的值及抽取到的男生人數(shù);

(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調查結果得到的列聯(lián)表. 請將列聯(lián)表補充完整,并判斷是否有 99%的把握認為選擇科目與性別有關?說明你的理由;

(3)在抽取的選擇“地理”的學生中按分層抽樣再抽取6名,再從這6名學生中抽取2人了解學生對“地理”的選課意向情況,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時期趙爽在《勾股方圓圖注》中,對勾股定理的證明可用現(xiàn)代數(shù)學表述為如圖所示,我們教材中利用該圖作為幾何解釋的是(

A.如果,那么

B.如果,那么

C.如果,那么

D.對任意實數(shù),有,當且僅當時,等號成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當時,求的解集;

(Ⅱ)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調性,并用單調函數(shù)的定義證明;

(Ⅱ)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案